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Chapter 1 

Cognitive Architecture 

 
 

 

Newell’s Ultimate Scientific Question 

On December 4, 1991 Allen Newell delivered his last lecture, knowing he was dying.  

Fortunately it was recorded1.   I recommend it to anyone who wants to hear a great 

scientist explaining the simple but deep truths about his life as a scientist.  For different 

people, different gems stand out from that talk, but the thing that stuck with me was his 

statement of the question that drove him.  He set the context: 

“You need to realize, if you haven’t before, that there is this collection of ultimate 

scientific questions, and if you are lucky to get grabbed by one of these, that will just do 

you for the rest of your life.  Why does the universe exist?  When did it start?  What’s the 

nature of life?  All of these are questions of a depth about the nature of our universe that 

they can hold you for an entire life and you are just a little ways into them.” 

 

Within this context, he announced that he had been so blessed by such a scientific 

question: 

 

                                                
1 Desires and diversions / Allen Newell; Carnegie Mellon University, School of 
Computer Science. Stanford, CA: University Video Communications, c1993.   The 
portion of the lecture in question is available at our web site (act-r.psy.cmu.edu) The 
entire lecture is available at: 
http://wean1.ulib.org/cgi-bin/meta-vid.pl?target=Lectures/Distinguished%20Lectures/1991 
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“The question for me is, how can the human mind occur in the physical universe?  We 

now know that the world is governed by physics.  We now understand the way biology 

nestles comfortably within that.  The issue is, how will the mind do that as well?  The 

answer must have the details.  I have got to know how the gears clank and how the 

pistons go and all the rest of that detail.  My question leads me down to worry about the 

architecture.” 

 

When I heard these remarks from Newell, I heard what drove me as a cognitive scientist 

stated more clearly than I had ever been able to articulate myself.   As Newell said, this 

question can hold you for a lifetime and you can only progress a little way towards the 

answer, but it is a fabulous journey. While Newell did much in his lifetime to make 

progress on the answer, I think he would be surprised by the developments since his 

death. For instance, we are now in a position where biology can really begin to inform 

our understanding of the mind. I can just see that enormous smile consuming his face if 

he had learned about these details. The purpose of this book is to report on some of the 

progress that has come from taking a variety of perspectives, including the biological. 

 

While Newell did not come up with a final answer to his question, he was at the center of 

developing an understanding of what that answer would be like.  The answer would be a 

specification of a cognitive architecture – “how the gears clank and how the pistons go 

and all the rest of that detail.”   The idea of a cognitive architecture did not exist when 

Newell entered the field, but it was well appreciated by the time he died.   Because 
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Newell did more than anyone else to develop it, it is really his idea.  It constitutes a great 

idea of science commensurate to the ultimate question of science that it addresses.   

 

The purpose of this chapter is to describe what a cognitive architecture is, how the idea 

came to be, what the (failed) alternatives to it are, and to introduce the cognitive 

architecture around which the discussion in the remaining chapters will be organized. 

 

What is a Cognitive Architecture? 

 

“Cognitive Architecture” is a term used with some frequency in modern cognitive science 

(it is one of the official topics in the Cognitive Science Journal), but that does not mean 

that what it implies is obvious to everyone.  Newell introduced the term cognitive 

architecture into cognitive science through an analogy to computer architecture (Bell and 

Newell, 1971), which Fred Brooks2 (1962) introduced into computer science through an 

analogy to the architecture of buildings.  

 

When acting in his or her craft, the architect neither builds nor lives in the house, but 

rather is concerned with how the structure (the domain of the builder) achieves the 

function (the domain of the dweller).  Architecture is the art of specifying the structure of 

the building at a level of abstraction sufficient to assure that the builder will achieve the 

functions desired by the user.  As his remarks at the beginning of his chapter 

“Architectural Philosophy” in Planning a  

                                                
2 Brooks managed the development of the IBM 360, which was a revolution at the time in the computer 

world.  His perspective on computer architecture came from his experiences at IBM leading up to this. 
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Computer System indicate, this seems to be the idea that Brooks had in mind 

 

“Computer architecture, like other architecture, is the art of determining the needs of the 

user of a structure and then designing to meet those needs as effectively as possible 

within economic and technological constraints.” (p. 5) 

 

In this passage, Brooks is using “architecture” to denote the activity of design, which in 

general usage probably constitutes its primary sense.  However, computer architecture 

has come to mean the product of the design instead of the activity of it..  This was the 

sense used by Bell and Newell.   It was in this sense that Newell introduced the term 

“cognitive architecture” into cognitive science, as can be seen in his 1990 definition: 

“the fixed (or slowly varying) structure that forms the framework for the immediate 

processes of cognitive performance and learning” (p. 111).3 

 

This conception of cognitive architecture is found in a number of other definitions in the 

field: 

Pylyshyn (1984):  “The functional architecture includes the basic operations provided by 

the biological substrate, say, for storing and retrieving symbols, comparing them, treating 

them differently” (p. 30) 

 

                                                
3 Elsewhere, reflecting the history that led to this definition, Newell describes it as “what 
is fixed mechanism (hardware) and what is content (software) at the symbol level is 
described by the description of the system at the register-transfer level….  To state the 
matter in general: given a symbol level, the architecture is the description of the system in 
whatever system-description scheme exists next below the symbol level.” (p.81) 
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Or my own rather meager definition: 

Anderson (1983): “a theory of the basic principles of operation built into the cognitive 

system.”4 (p. ix) 

 

It is worth reflecting on the relationship between the original sense of architecture 

involving buildings and this sense involving cognition.  Figure 1.1 illustrates that 

relationship.  Both sense of architecture involve relating a structure to a function: 

  

Structure. The building’s structure involves its physical components – its posts, fixtures, 

etc.  None of the above definitions of cognitive architecture actually mentions its physical 

component – the brain – although Pyslyhyn’s hints at it.   While it would be strange to 

talk about a building’s architecture at such a level of abstraction that one ignored its 

physical reality, one frequently finds discussions of cognitive architecture that simply do 

not mention the brain, .  The definition at the end of this section, however, will make 

explicit reference to the brain. 

 

Function: The function of building architecture is to enable the habitation, and the 

function of cognitive architectures is to enable cognition.  Both habitation and cognition 

are behaviors of beings, but there is a difference in how they relate to the structure. In the 

case of a building, its function involves another agent: the dweller.   In the case of 

cognitive architecture (or computer architecture), the structure is the agent5.  Thus, there 

                                                
4 While my quoted definition predates the Newell dated definition, I know I got the term 
from discussions with him. 
5 One could get Platonic here and argue that “knowledge” is the agent occupying the cognitive architecture; 

then the analogy to physical architecture would be even closer. 
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is a functional shift from construction being designed to enable the activity of another to 

construction enabling its own activity.   Except for this shift, however, there is still the 

same structure-function relationship.  In both cases, an important measure of function is 

the success of the resulting behavior –building architecture is constrained to achieve 

successful habitation; cognitive architecture is constrained to achieve successful 

cognition6. 

 

Before the idea of cognitive architecture emerged, a scientist interested in cognition 

seemed to have two options -- either focus on structure and get lost in the endless details 

of the human brain (a structure of approximately 100 billion neurons), or focus on 

function and get lost in the endless details of human behavior.   To understand the mind, 

we need an abstraction that gets at its essence.  The cognitive architecture movement 

reflects the realization that this abstraction lies in understanding the relationship between 

structure and function rather than focusing on either individually.  Of course, just stating 

the category of the answer in this way does not give the answer.  There are major debates 

in cognitive science about what the best abstractions are for specifying a cognitive 

architecture. 

 

With all this in mind, here is a definition of cognitive architecture for the purposes of this 

book: 

A cognitive architecture is a specification of the structure of the brain at a level of 

abstraction that explains how it achieves the function of the mind. 

                                                
6 Although in one case the constraint is created by the marketplace and in the other case by evolution.  I am 

aware that this discussion ignores aesthetic issues that influence the architecture of buildings. 
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Like any definition, this one relates one term, in this case cognitive architecture, to other 

terms.  I suspect readers are going to wonder more about what the term “function of the 

mind” is in this definition than what the term “structure of the brain” is.    The goal of a 

cognitive architecture is to provide the explanatory structure for better understanding 

both of these terms.  However, before specifying such an architecture – and as some 

protection against misunderstanding – I’ll note here that the “function of the mind” can 

be roughly interpreted as referring to human cognition in all of its complexity.  

 

Alternatives to Cognitive Architectures 

 

The type of architectural program that I have in mind requires paying attention to three 

things: brain, mind (functional cognition), and the architectural abstractions that link 

them.   The history of cognitive science since the cognitive revolution has seen a number 

of approaches that tried to do with less; they can be viewed as shortcuts to understanding.  

This chapter will examine three of the more prominent instances of such shortcuts, 

discuss what they can accomplish, and note where they fall short of being capable of 

answering Newell’s question.   By looking at these shortcuts and what their problems are, 

we can better appreciate what the cognitive architecture program contributes when it 

attends to all three components. 

 

Shortcut 1. Classic Information-Processing Psychology: Ignore the Brain 
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The first shortcut is the classic information-processing psychology7 that ignored the 

brain.   It was strongly associated with Newell and Simon, and one can argue that Newell 

never fully appreciated the importance of the brain in an architectural specification.  In 

the decades immediately after cognitive psychology broke off from behaviorism, many 

argued that the answers it provided were at a level of abstraction that allowed it to ignore 

the brain. Rather than cite someone else for this bias, I will quote myself, although I was 

just parroting the standard party line: 

 

“Why not simply inspect people’s brains and determine what goes on there when they are 

solving mathematics problems? Serious technical obstacles must be overcome, however, 

before the physiological basis of behavior could be studied in this way.  But, even 

assuming that these obstacles could be properly handled, the level of analysis is simply 

too detailed to be useful.  The brain is composed of more than 10 billion nerve cells8.  

Millions are involved in solving a mathematics problem.  Suppose we had a listing that 

explained the role of each cell in solving the problem.  Since the listing would have to 

describe the behavior of individual cells, it would not offer a very satisfactory 

explanation for how the problem was solved.  A neural explanation is too complex and 

detailed to adequately describe sophisticated human behavior.  We need a level of 

analysis that is more abstract.” (Anderson, 1980, pp 10 & 11) 

 

The problem with this classic information-processing account is that it is like a 

specification of a building’s architecture that ignores what the building is made out of.  

                                                
7 The modifier “classic” is being appended because “information processing” is used in many different 

senses in the field and I do not want it to appear as if this characterization applies to all senses of the term. 
8 This number has also come in for some revision. 
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Nonetheless, this type of account was very successful during the 1960s and 1970s.  For 

example, the Sternberg task, and Saul Sternberg’s (1966) model, was held up to my 

generation of graduate students as the prototype of a successful information-processing 

approach. In the prototypical Sternberg paradigm, participants are shown a small 

number of digits, such as “3 9 7,” that they must keep in mind. They are then asked to 

answer – as quickly as they can – whether a particular probe digit is in this memory set. 

Sternberg varied the number of digits in the memory set and looked at the speed with 

which participants could make this judgment. Figure 1.2a illustrates his results.  He found 

a nearly linear relationship between the size of the memory set and the judgment time, 

with each additional item adding 35-40 ms to the time. Sternberg also developed a very 

influential model of how participants made these judgments that exemplifies what an 

abstract information-processing model is like. Sternberg assumed that when participants 

saw a probe stimulus such as a 9, they went through the series of information-processing 

stages that are illustrated in Figure 1.2b. The stimulus first has to be encoded, then be 

compared to each digit in the memory set. He assumed that it took 35-40 ms to complete 

each of these comparisons.  Sternberg was able to show that this model accounted for the 

millisecond behavior of participants under a variety of manipulations. Like many of those 

who created the early information-processing theories, Sternberg reached for the 

computer metaphor to help motivate his theory: 

“When the scanner is being operated by the central processor it delivers memory 

representations to the comparator.  If and when a match occurs a signal is delivered to the 

match register….” (p. 444) 
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From its inception, there were expressions of discontent with the classic information-

processing doctrine.  With respect to the Sternberg model itself, James Anderson wrote a 

1973 Psychological Review article protesting that this model was biologically implausible 

in assuming that comparisons could be completed in 35 ms. It became increasing 

apparent that the computer-inspired model of discrete serial search failed to capture many 

of the nuances of the data (e.g., Glass, 1984; Van Zandt and Townsend, 1993).  Such 

criticisms, however, were largely ignored until connectionism arose in the 1980s.   

Connectionism’s proponents added many examples bolstering Anderson’s general claim 

that processing in the brain is very different from processing in the typical computer.   

The connectionists argued that processing was different in brains and computers because 

a brain consists of millions of units operating in parallel, but slowly, whereas the typical 

computer rapidly executes a sequence of actions, and computers are discrete in their 

actions whereas neurons in the brain are continuous.    The early connectionist successes, 

such as the Rumelhart and McClelland past-tense model, which will be described shortly, 

illustrated how much insight could be gained from taking brain processing seriously. 

 

The rise of neural imaging in the 1990s has added more force to the importance of 

understanding the brain as the structure underlying cognition.  Initially, researchers were 

simply fascinated by their newfound ability to see where cognition played out in the 

brain.  More recently, however, brain-imaging research has strongly influenced theories 

of cognitive architecture.  I will describe a number of examples of this influence.  It has 

become increasingly apparent that cognition is not so abstract that our understanding of it 

can be totally divorced from our understanding of its physical reality. 
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Shortcut 2. Eliminative Connectionism: Ignore the Mind 

 

As noted, one reason for dissatisfaction with the information-processing approach was 

the rise of connectionism and its success in accounting for human cognition through 

paying attention to the brain.   Eliminative connectionism9 is a type of connectionism that 

holds that all we have to do is pay attention to the brain -- just describe what is happening 

in the brain at some level of abstraction.  Why include mental function as a constraint; 

why not just describe structure of the brain?   Of course, that brain structure will generate 

the behavior of humans, and that behavior is functional.   However, maybe it is just 

enough to describe the brain and get functional behavior for free from that description. 

 

Eliminative connectionism is like claiming that we can understand a house just in terms 

of boards and bricks without understanding the function of its parts.  This approach 

seems unlikely to yield useful results, approach and other metaphors reinforce skepticism 

– trying to understand what a computer is doing solely in terms of the activity of its 

circuitry without trying to understand the program that the circuitry is implementing, or 

indeed, trying to understand the other parts of the body just in terms of the properties of 

their cells without trying to understand their function.  Despite the reasons for skepticism, 

this is just the approach of eliminative connectionism.   Its goal is to come up with an 

abstract description of the computational properties of the brain – so-called “neurally 

inspired” computation – and then apply this description to explain various behavioral 

                                                
9 A term introduced by Pinker and Prince (1988) to describe connectionist efforts that eliminate symbols as 

useful explanations of cognitive processes, although here I am really using it to refer to efforts that ignore 

functional organization (how the pieces are put together). 
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phenomena.  It is not concerned with how the system might be organized to achieve 

functional cognition.   Rather, it assumes that cognition is whatever emerges from the 

brain’s responses to the tasks it is presented and that any functionality comes for free – 

the house is what results from the boards and the carpenters, and if we can live in it, so 

much the better. 

 

Eliminative connectionism has enjoyed many notable successes over the past two 

decades. The past tense model of Rumelhart and McClelland (1986) is one such success; 

I will describe it here as an exemplary case.   Children show an interesting history 

(Brown, 1973) in dealing with irregular past tenses.  For instance, the past tense of sing is 

sang. First, children will use the irregular correctly, generating sang; then they will 

overgeneralize the past-tense rule and generate singed; finally, they will get it right for 

good and return to sang. The existence of this intermediate stage of overgeneralization 

has been used to argue for the existence of rules, since it is argued that the child could not 

have learned from direct experience to inflect sing with ed. Rather, children must be 

overgeneralizing a rule that has been learned.   Until Rumelhart and McClelland, this was 

the conventional wisdom (e.g., Brown, 1973), but it was a bit of a “just so story” as no 

one produced a running model that worked in this way.10   

 

Rumelhart and McClelland (1986) not only challenged the conventional wisdom, they 

implemented a system that approximated the empirical phenomena by simulating a neural 

                                                
10 Actually, this statement is a bit ungenerous to me.  I produced a simulation model that embodied this 

conventional wisdom in Anderson (1983), but it was in no way put into serious correspondence with the 

data.  Although the subsequent past tense models are still deficient in various aspects of their empirical 

support, they do reflect a more serious attempt to ground the theories in empirical facts. 
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network illustrated in Figure 1.3 that learned the past tenses of verbs. In the network, one 

inputs the root form of a verb (e.g., kick, sing) as an activated set of feature units. After 

passing through a number of layers of association, the past-tense form (e.g., kicked, sang) 

should appear as another activated set of feature units.   Their computer model was 

trained with a set of 420 pairs of root verbs with their past tenses. A simple neural 

learning system was used to learn the mapping between the feature representation of the 

root and the feature representation of the past tense. Thus, their model might learn 

(momentarily, incorrectly) that words beginning with “s” are associated with past tense 

endings of “ed,” thus leading to the “singed” overgeneralization (but things can be much 

more complex in such neural nets). The model mirrored the standard developmental 

sequence of children: first generating correct irregulars, then overgeneralizing, and finally 

getting it right. It went through the intermediate stage of generating past-tense forms such 

as singed because of generalization from regular past-tense forms. With enough practice, 

the model, in effect, memorized the past-tense forms and was not using generalization. 

Rumelhart and McClelland concluded: 

“We have, we believe, provided a distinct alternative to the view that children learn the 

rules of English past-tense formation in any explicit sense. We have shown that a 

reasonable account of the acquisition of past tense can be provided without recourse to 

the notion of a “rule” as anything more than a description of the language. We have 

shown that, for this case, there is no induction problem. The child need not figure out 

what the rules are, nor even that there are rules.” (1986, p. 267) 
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Thus, they claim to have achieved the function of a rule without ever having to consider 

rules in their explanation.  The argument is that one can understand function by just 

studying structure11 and not constraining that structure to achieve the function.  This 

original model is 20 years old and had shortcomings that were largely repaired by more 

adequate models that have been developed since (e.g., Plunkett and Joula, 1999; Plunkett 

and Marchand, 1993).  Many of these later models are still quite true to the spirit of the 

original.  This is still an area of lively debate, and Chapter 4 will describe our 

contribution to that debate.  

 

However, the whole enterprise rests on a sleight of hand.  This is not often  noted, 

perhaps because many other models in cognitive science depend on this same slight of 

hand.12 The sleight of hand becomes apparent if we register what the model is actually 

doing: mapping activation patterns onto activation patterns.  It is not in fact engaged in 

anything resembling human speech production.  Viewed in a quite generous light, the 

model is just a system that blurts out past tenses whenever it hears present tenses, which 

is not a common human behavior.  That is, the model does not explain how, in a 

functioning system, the activation-input patterns get there, or what happens to the output 

patterns to yield parts of coherent speech. The same system could have been tasked with 

mapping past tenses onto present tenses – which might be useful, but for a different 

function.  The model only seems to work because we are able to imagine how it could 

                                                
11 “Structure” here refers to more than just the network of connections; it also includes the neural 
computations and learning mechanisms that operate on this network. 
12 Our own ACT-R model of past tense (Taatgen and Anderson, 2002) is guilty of the same sleight of hand.  

It is possible to build such ACT-R simulations that are not end-to-end simulations but simply models of a 

step along the way.   However, such fragmentary models are becoming less common in the ACT-R 

community. 
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serve a useful function in a larger system, or because we hook it into a larger system that 

actually does something useful.  In either case, the functionality is not achieved by a 

connectionist system; it is achieved by our generous imaginations or by an ancillary 

system we have provided.  So, basically in either case, it is we who have provide the 

function for the model, but we are not there to provide the function for the child.  The 

child’s mind must put together the various pieces required for a functioning cognitive 

system.  

 

The criticism above is not a criticism of connectionist modeling per se, but rather a 

criticism of modeling efforts that ignore the overall architecture and its function.  

Connectionism is more prone to this error because its more fine-grained focus can lead to 

myopic approaches.  Nonetheless, there are connectionist efforts that are concerned with 

full functioning systems (Smolensky and Legendre, 2006), striving to capture more of the 

overall flow of information processing in the brain (O’Reilly and Munakata, 2000).  

Especially, in the Smolensky and Legendre case, this reflects a conscious decision not to 

ignore function. 

 

Shortcut 3.  Rational Analysis: Ignore the Architecture 

 

Another shortcut starts from the observation that a constraint on how the brain achieves 

the mind is that both the brain and the mind have to survive in the real world. Rather than 

focus on architecture as the key abstraction, focus on adaptation to the environment.  I 

have called this approach rational analysis when I tried practicing it (Anderson 1990), but 
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it has been called other things when practiced by such notables as Egon Brunswik (1955 

– probabilistic functionalism), James Gibson (1966 – ecological psychology), David Marr 

(1982 – computation level), and Roger Shepard (1984, 1987 – evolutionary psychology).  

More recent research in this spirit includes that of Nick Chater and Mike Oaksford 

(1999), Gerd Gigerenzer (Gigerenzer and Todd, 1999), and Josh Tenenbaum 

(Tenenbaum and Griffiths, 2001).   My application of this approach was basically 

Bayesian, and more recent approaches have become even more Bayesian.  Indeed, the 

Bayesian statistical methodology that accompanies much of this research has almost 

become a new Zeitgeist for understanding human cognition.  Briefly, the Bayesian 

approach claims that 

1. We have a set of prior constraints about the nature of the world we occupy.  These 

priors reflect the statistical regularities in the world that we have acquired either 

through evolution or experience.  For instance, physical objects in the universe 

tend to have certain shapes, reflectance properties, and paths of motion, and our 

visual system has these priors built into it.  

2. Given various experiences, one can calculate the posterior probability that various 

states of the world gave rise to them. For instance, we can calculate the 

conditional probability of what falls on our retina given different states of affairs 

in the world. 

3. Given the input, one can calculate the posterior probabilities from the priors (1) 

and conditional probabilities (2) .  For instance, one can calculate what state of 

affairs in the world most likely corresponds to what falls on our retina. 
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4. After making this calculation, one engages in Bayesian decision-making and takes 

the action that optimizes our expected utilities (or minimizes our expected costs).  

For instance, we might duck if we detect information that is consistent with an 

object coming at our head.  Anderson (1990) suggested that at this stage, 

knowledge of the structure of the brain could come into play in computing the 

biological costs of doing something.   

 

The Bayesian argument claims neither that people explicitly know the priors or the 

conditional probabilities nor that they do the math explicitly.  Rather, we don’t have to 

worry about how people do it;  we can predict their cognition and behavior just from 

knowing that they do it somehow.  Thus, the Bayesian calculus comes to take the place of 

the cognitive architecture. 

 

I regard the work I did with Lael Schooler on memory as one of the success stories of this 

approach (Anderson and Schooler, 1991; Schooler and Anderson, 1997).   We looked at 

how various statistics about the appearance of information in the environment predicted 

whether we would need to know the information in the future.  Figure 1.4 shows an 

example related to the retention function (the probability and speed of remembering 

something).  Part (a) of that figure shows how the probability that I will receive an email 

message from someone on a day varies as a function of how long it has been since I last 

received an email from that person.  So, for example, if I received an email message from 

someone yesterday, the probability is about 30% that I will receive one from him or her 

on today.  However, if it has been 100 days since I last received an email message from 
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that person, the probability is only about 1% that I will receive one from him or her 

today.   Figure 1.4a shows a rapid drop off indicating that if I have not heard from 

someone for a while, it becomes very unlikely that I will again.   Anderson and Schooler 

found this same sort of function showing up for repetition of information in all sorts of 

environments.  It reflects the demand that the world makes on our memory.  For instance, 

when I receive an email message, it is a demand on my memory to remember the person 

who sent it. 

 

 If the brain chose which memories to make most available, it would make sense to 

choose the memories that are most likely to be needed.   Figure 1.4a indicates that time 

since a memory was last used is an important determinant of whether the memory will be 

needed now. Anderson and Schooler did the Bayesian math to show that this temporal 

determinant implied that retention functions should show the same form as environment 

functions such as Figure 1.4a, and they do,  as Figure 1.4b shows in the classic retention 

function obtained by Ebbinghaus.  Thus, a memory for something diminishes in 

proportion to how likely people are to need that memory.  We showed that this was true 

not only for retention functions, but also for practice functions, for the interaction 

between practice and retention, for spacing effects, for associative priming effects, and so 

on. Human memory turned out to mirror the statistical relationship in the environment in 

every case. As described in Chapter 3, we discovered a relationship between retention 

and priming in the environment that had never been tested in human memory.  Schooler 

did the experiment and, sure enough, it was true of human memory (Schooler and 

Anderson, 1997). Thus, the argument goes, one does not need a description of how 
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memory works, which is what an architecture gives; rather, one needs to focus on how 

memory solves the problems it encounters. Similar analyses have been applied to vision 

(Karlin and Lewicki, 2005), categorization (Anderson, 1991b; Tenenbaum, 1997; 

Sanborn, Griffiths,  and Navarro, 2006), causal inference (Griffiths and Tenenbaum, 

1995), language (Pickering and Crocker, 1996), decision making (Bogacz et al., 2006), 

and reasoning (Oaksford and Chater, 1994). 

 

While I was an advocate of this approach, I started to realize (e.g., Anderson, 1991a) that 

it would never answer the question of how the human mind can occur in the physical 

universe. This is because the human mind is not just the sum of core competences such as 

memory, or categorization, or reasoning.  It is about how all these pieces and other pieces 

work together to produce cognition.  All the pieces might be adapted to the regularities in 

the world, but understanding their pattern of adaptation does not address how they are put 

together. 

 

In many cases, the rational analyses (e.g., vision, memory, categorization, causal 

inference) have characterized features of the environment that all primates (and perhaps 

all mammals) experience.13  Actually, many of these adaptive analyses were inspired by 

research on optimal foraging theory (Stephens and Krebs, 1986), which is explicitly pan-

species in its approach.  The universal nature of these features raises the question of what 

enables the human mind in particular.14  Humans share much with other creatures 

                                                
13 Schooler has done unpublished analyses of primate environments. 
14 While there have been some interesting analyses of how the statistics of the language affect language 

learning and language use (e. g., Newport and Aslin, 2004), exposing a non-human primate to these 

statistics does not result in language processing capability. 
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(primates in particular), so these analyses have much to contribute to understanding 

humans, but something is missing if we stop with them.  There is a great cognitive gulf 

between humans and other species, and we need to understand the nature of that gulf.  

What distinguishes humans is their ability to bring the pieces together, and this unique 

ability is just what adaptive analyses do not address, and just what a cognitive 

architecture is about. As Newell said, you have to know how the gears clank and how the 

pistons go and all the rest of that detail. 

 

ACT-R: A Cognitive Architecture 

 

It was basically a rhetorical ploy to have postponed giving an instance of a cognitive 

architecture until now.   Many instances of cognitive architecture exist, including 

connectionist architectures15.  Newell was very committed to an architecture called Soar, 

which has continued to evolve and grow since his death (Newell, 1990 – see 

http://sitemaker.umich.edu/soar for current developments in Soar). 

 

A different book could have included a comparison of different cognitive architectures, 

but such comparisons are already abundant in the literature (e.g., National Research 

Council, 1998; Ritter et al., 2003; Taatgen and Anderson, in press).  The goal of this book 

is not to split hairs about the differences among architectures, but to use one to try to 

convey what we know that is true about the human mind.   For this purpose, I will use the 

ACT-R architecture (Anderson et al, 2004) because I know it best.   However, this book 

                                                
15 Just do a search on “connectionist architecture” in Google. 
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is not about ACT-R; rather, I am using ACT-R as a tool to describe the mind.  Like the 

architect’s drawings are tools to connect structure and function, the ACT-R models in this 

book are being used to connect brain and mind.  We may be proud of our ACT-R models 

and think they are better than others in just the way architects are proud of their 

specifications, but we try not to loose track of the fact that they are just a way of 

describing what is really of interest. 

 

ACT-R has a history (discussed in the Appendix) going back 30 years to the HAM theory 

and early ACT theories.  ACT-R emerged in 1993 (Anderson, 1993) when I realized the 

inadequacy of rational analysis, but the R stands for “rational” to reflect the influence of 

rational analysis.  Today ACT-R is the product of a community of researchers who use it 

to theorize about cognitive processes.   There is an ACT-R web site (http://act-

r.psy.cmu.edu/) that you can visit to read about example models or to consult the users 

manual and tutorial for the simulation system that specify the details of the architecture.   

(A computer simulation of the architecture has been developed that allows us to work out 

precisely what ACT-R models predict about human cognition.)    .   Having this 

documentation on the web allows me to focus here on core ideas about human cognition, 

and to develop them in detail in later chapters.  The goals of the remainder of this chapter 

are to briefly describe ACT-R as an illustration of a cognitive architecture, to show how 

an architecture can be connected to the results of brain imaging. and to use ACT-R as a 

context for discussing contentious issues in cognitive science regarding the status of 

symbols.  
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ACT-R’S Modular Organization 

Figure 1.5 illustrates the ACT-R architecture as it appeared in Anderson (2005). In this 

architecture, cognition emerges through the interaction of a number of independent 

modules.  Anderson (2005) was concerned with how the ACT-R system applied to the 

learning of a small fragment of algebra.  The five modules in Figure 1.5 were those16 

used in the model I developed of algebra learning: 

1. A visual module that might hold the representation of an equation such as “3x – 5 

= 7”. 

2. A problem state module (sometimes called an imaginal module) that holds a 

current mental representation of the problem.  For example, the student might 

have converted the original equation into a mental image of “3x =12.” 

3. A control module (sometimes called a goal module) that keeps track of one’s 

current intentions in solving the problem.  For example, one might be trying to 

perform an algebraic transformation. 

4. A declarative module that retrieves critical information from declarative memory, 

such as that 7 + 5 = 12. 

5. A manual module that programs the output, such as “x = 4” 

 

Each of these modules is associated with specific brain regions; ACT-R contains 

elaborate theories about the internal processes of these modules.   Later chapters explore 

the specifics of some of these modules, which must communicate among each other; they 

do so by placing information in small-capacity buffers associated with them.  A central 

procedural system (a sixth module) can recognize patterns of information in the buffers 

                                                
16 The next chapter will discuss all eight modules that are currently part of ACT-R. 
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and respond by sending requests to the modules. These recognize-act tendencies of the 

central procedural module are characterized by production rules.  E.g., the following is a 

description of a possible production rule in the context of solving algebraic equations 

such as 3x –5 = 7: 

 

If the goal is to solve an equation 
       And the equation is of the form  “expression - number1 = number2” 
THEN write “expression = number2 + number1”17 
 

where the first line refers to the goal buffer, the second line to the visual buffer, and the 

third line to a manual action. 

 

Anderson (2005) describes a detailed model of learning to solve simple linear equations 

(such as 3x –5 = 7) that was used to understand the data from an experiment (Qin et al, 

2004) involving children aged 11-14.  They were proficient in the middle-school 

prerequisites for algebra, but they had never before solved equations.  During the 

experiment,  they practiced solving such equations for 1 hour per day for 6 days.  The 

first day (Day 0) they were given private tutoring on solving equations; on the remaining 

5 days, they practiced solving three classes of equations on a computer: 

0-step: e.g., 1x+0=4 

1-step: e.g., 3x+0=12, 1x+8=12 

2-step: e.g., 7x+1=29 

Figure 1.6 shows how the time required by the children to process  these equations 

diminished over the course of the experiment. 

                                                
17 This rule is hypothetical, used for illustration; consult Anderson (2005) for more accurate details. 
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Figure 1.6 also illustrates the predictions of a model implemented in the ACT-R 

architecture.  The model is not programmed to do the task; instead it starts with 

declarative representations of the instructions that the children receive and has general 

production rules for following any set of instructions.   It also has a virtue that can be 

achieved by a system built in a full cognitive architecture  -- it does the entire task 

transparently, from the appearance of the equation on the screen to the pressing of the 

keystroke (unlike past tense models that model a small fraction of the task and leave to 

the imagination how that fraction results in functional behavior).  We sometimes call this 

a model of end-to-end behavior. 

 

The model, like the participants, took longer with more complex equations because it had 

to go through more cognitive steps.  More interestingly, it improved gradually in task 

performance at the same rate as participants: the effect of 6 days of practice was to make 

a 2-step equation like a 1-step equation in terms of difficulty (as measured by solution 

time) and a 1-step equation like a 0-step equation; Anderson (2005) describes the detailed 

processing. The critical factors in learning to solve equations will be considered in 

Chapter 5.  However, for current purposes, Figure 1.7 (taken from Anderson (2005)) 

illustrates the detailed processing involved in solving the 2-step equation 7x + 3 = 38 on 

the first (Figure 1.7a) and fifth (Figure 1.7b) days of the experiment.  In the figure, the 

passage of time moves from top to bottom and different columns represent the points in 

time at which different modules were active. This can be seen as just a great elaboration 

of the Sternberg stage model (Figure 1b) in which stages include activities in multiple 
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modules that can be simultaneously active.   The primary reason the model requires less 

time on day 5 than on day 1 is a reduction in the amount of information the declarative 

module is called upon to retrieve.   This is clear in the comparison between the amounts 

of activity in the retrieval columns in parts (a) and (b) of Figure 1.7.   As will be 

elaborated on in Chapters 3 and 4, this is due to increased speed of individual retrievals 

and because retrieval of instructions is replaced by production rules specific to algebra. 

 

Brain Imaging Data and the Problem of Identifiability 

 

The complexity of Figure 1.7 relative to the simplicity of the behavioral data in Figure 

1.6 reflects a deep problem that has seriously handicapped efforts to develop cognitive 

architectures.   A very complicated set of information-processing steps is required to go 

from instruction on algebra and the presentation of an algebraic equation to the actual 

execution of an answer.  No matter how one tries to do it, if the attempt is detailed and 

faithful to the task, the resulting picture is complicated like Figure 1.7.   However, while 

we know the process is complicated, it does not necessarily follow that those complicated 

steps are anything like Figure 1.7 in terms of the modules involved or exact sequences of 

operations.   Working with standard behavioral data, the only way a cognitive modeler 

had to tell whether his or her model was correct was whether it matched data such as 

Figure 1.6’s. But such data do not justify all of this detail.   

 

In Anderson (1990) I showed that given any set and any amount of behavioral data, there 

would always be multiple different theories of internal process that produced that data. I 
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concluded, “it is just not possible to use behavioral data to develop a theory of the 

implementation level in the concrete and specific terms to which we have aspired” (p. 

24).  This was part of my motivation for developing the rational approach.  In 1990 a 

diagram such as Figure 1.7 would be as much my fantasy about what was going on as it 

would be fact.  However, I did acknowledge that physiological data would get us out of 

this identifiability dilemma.  I claimed that “the right kind of physiological data to obtain 

is that which traces out the states of computation of the brain,” because this would 

provide us with “one-to-one tracing of the implementation level.”   I noted the progress 

that the pioneers of brain imaging had already made by 1990. 

 

While the field is not altogether there yet in 2007, it is much closer to having what is 

needed to base a diagram such as Figure 1.7 on fact rather than fantasy.  In our lab we 

have been mainly working with fMRI (functional magnet resonance imagery) brain 

imaging data.   The next chapter will include an up-to-date report of the connections we 

have made between modules of ACT-R and activity in specific brain regions, but this 

chapter provides a taste of material illustrating that it is possible to map some of the detail 

in Figure 1.7 onto precise predictions about brain regions. 

 

The children whose behavioral data were reported in Figure 1.6 were scanned on days 1 

and 5 in an fMRI scanner.  The details of the study and derivation of predictions from 

Figure 1.7 are available in Anderson (2005); Figure 1.8 summarizes the predictions and 

results for 5 brain regions.  These regions are not cherry-picked for this one study; they 
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are the same regions examined in study after study because they are associated with 

specific modules in the ACT-R theory.    

 

Predicting the BOLD Response in Different Brain Regions 

 

Figure 1.8a illustrates the simplest case, which is the motor module.   The representation 

of the hand along the motor strip is well known, and there is just a single use of this 

module on each trial to program the response. The x-axis presents time from the onset of 

the trial18.  The data in Figure 1.8 show the increase from base line in the BOLD (blood 

oxygen level dependent) response in this region.   The top graph shows the BOLD 

response for different numbers of operations (averaging over days).   The three BOLD 

functions are lagged about 2 seconds apart, just as the actual motor responses are in the 

three conditions.  However, as typical of BOLD functions, they slowly rise and fall, 

reaching a peak 4 to 5 seconds after the key press.  The bottom graph in the figure 

compares the BOLD response on days 1 and 5 (averaging over the number of 

transformations).   Basically, the response shifts a little forward in time from day 1 to day 

5, reflecting the speed increase.  The predictions are displayed as solid lines in the figure 

and provide a good match to the data.  As detailed in the next chapter, these predictions 

are generated according to when the module is active. Whenever a module is active, it 

creates extra metabolic demand in its associated brain region, which drives a larger 

BOLD signal.  In the case of the manual module, the activity and metabolic demand 

                                                
18 The first 1.2 seconds involved presentation of a warning signal before the equation was presented.  The 

data in Figure 1.6 are from presentation of the equation. 
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happen at the end of the charts in Figure 1.7. Figure 1.8a illustrates the ability of this 

methodology to track one component in an overall task 

 

Unlike the motor module, the other modules are used sporadically through the solution of 

the problem rather than just at the end (see Figure 1.7).   Because the BOLD response 

tends to smear close-by events together, it is not possible in this experiment to track the 

timing of a specific step in these other modules.   Nonetheless, we can generate and test 

distinct predictions for these regions. 

 

 We have associated a prefrontal region (see Figure 1.8b) with retrieval from the 

declarative module.   In contrast to the motor region, in this prefrontal region there are 

very different magnitudes of response for different numbers of operations in the top 

graph.  This is as predicted, since more transformations mean that more instructions and 

mathematical facts need to be retrieved to solve the equation.  A distinguishing feature of 

this region is the very weak response it generates in the case of 0 steps.  According to the 

model, this case involves some brief retrievals of instructions but no retrieval of number 

facts, which is why the response is so weak.   As noted earlier, the major reason for the 

speed increase across days is that the number of retrievals decreases and the time per 

retrieval speeds up.   Therefore, the reduction is predicted in the BOLD response in going 

from Day 1 to Day 5 in the bottom graph in Figure 1.8b. 

 

We have associated a region of the anterior cingulate cortex (see Figure 1.8c) with the 

control function of the goal module.  As in the prefrontal region, there is a large effect of 
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number of operations in the top graph because the model has to go through more control 

states when there are more transformations.   In contrast to the prefrontal region, 

however, in the anterior cingulate cortex there is a robust response even in the 0 step 

case, because it is still necessary to go through the control states governing the encoding 

of the equation and the generation of the response.  The striking feature of the anterior 

cingulate is that there is almost no effect of learning in the bottom graph.  The effect of 

practice is largely to move the model more rapidly through the same state changes, and so 

there is little change in the number of control states.  Therefore, little effect is predicted 

for number of days. 

 

For the sake of brevity, I will skip discussion of the other two regions (the parietal in 

Figure 1.8d associated with the imaginal module, and the caudate in Figure 1.8e 

associated with the procedural module), except to note that they display a pattern similar 

to one another but different from any of the other regions.  Details can again be found in 

Anderson (2005), as well as evidence of just how good the match up is between 

prediction and data.   The fact that we can obtain and predict four different patterns of 

activation across the same conditions shows the power of imaging to go beyond the 

latency data displayed in Figure 1.6. And if the suspicious reader is wondering just how 

good the match up is between prediction and data, please go to Anderson (2005). 

 

 

The rest of the book will be concerned in great detail with the properties of these specific 

regions and their associations with ACT-R modules.   We will discuss the similarities and 
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differences between the ACT-R interpretation of these regions and other interpretations 

in the literature.   Unless you are quite familiar with this research, the similarities among 

the theories will seem much greater than the differences.   There is convergence in the 

literature on the interpretation of the functions of these various brain regions.  

 

Summary 

 

For the purposes of this chapter, consider how the ACT-R architecture avoids the pitfalls 

of the shortcuts that have been reviewed: 

 

1. Unlike the classic information-processing approach, the architecture is directly 

concerned with data about the brain.   While brain imaging data have played a 

particularly important role in my laboratory, data about the brain more generally 

have been influential in the development of ACT-R. 

2. Unlike eliminative connectionism, an architectural approach is also focused on 

how a fully functioning system can be achieved.   Within the ACT-R community, 

the primary functional concern has been with the mathematical-technical 

competences that define modern society.19  The final chapter of this book will 

elaborate extensively on what algebra problem solving reveals as unique in the 

human mind 

                                                
19 However, the reader should not think this is all that has been worked on.  The ACT-R web site displays 

the full range of topics on which ACT-R models have been developed. 



 31 

3. Unlike the rational approach and some connectionist approaches, ACT-R does not 

ignore issues about how the components of the architecture are integrated.   

Indeed, ACT-R is more a theory about that integration than anything else. 

 

Symbols versus Connections in a Cognitive Architecture 

 

The Debate 

There is a great debate in cognitive science between architectures that are called symbolic 

and architectures that are called connectionist, and ACT-R has been reluctantly placed on 

one side of this debate.   I would rather skip that to get on with the story, but the debate is 

too notorious to just ignore.20   .  While it is not a commonly held characterization among 

members of the ACT-R community, many members of the larger cognitive science 

community tend to regard ACT-R as an instance of a symbolic architecture.21  The 

connectionist past-tense models described earlier did not gather so much attention simply 

by accomplishing what had not been done before.  Rather, they were magnets for 

attention in the cognitive science community because of statements like the one quoted 

earlier that claimed to have done away with symbols. These connectionist efforts claimed 

to have shown fundamental inadequacies in “symbolic” architectures such as ACT-R.  

There has been no lack of people willing to join the debate on the symbolic side (e.g., 

Fodor and Pylyshyn, 1988; Pinker and Prince, 1988; Marcus, 2001).   It was a particular 

virtue of Newell that he never engaged in this debate, even though others had placed him 

on the symbolic side of the world (and he certainly did believe in symbols). 

                                                
20 Perhaps this is why I put this off to the last topic in the chapter. 
21 I received the Rumelhart prize in 2005 as “the leading proponent of the symbolic modeling framework”.  

While I was very honored by the prize, I have to confess the characterization left a craw in my throat. 
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Some fraction of the controversy is really a debate about the language to describe 

cognition, rather than about scientific claims.  This debate turns on the word “symbol” – 

a word that enjoyed a happy existence in the English language until the advent of 

cognitive science.  In the good old days, symbols were physical objects (usually visual 

representations -- for instance, the cross as the symbol for Christianity) that were used to 

stand for or designate something else.  There were good symbols and bad symbols (in 

many senses of the words “good” and “bad”), but nobody would think to debate whether 

symbols, per se, were good or bad.  Among these symbols were the symbols of 

mathematicians and logicians.  Among these mathematicians and logicians were people 

such as Church, Turing, Goedel, Post, and von Neumann who noted that computation 

could be achieved by operations on such symbols – hence the emergence of the idea of 

symbol manipulation.  With the appearance of real computers, individuals such as 

McCarthy who were heavily influenced by this logical background created symbol 

manipulation languages such as LISP that formed the backbone of early artificial 

intelligence.   By this time the “symbol” in cognitive science had only a loose connection 

to its original meaning.   

 

There is a lack of consensus about whether symbols in cognitive science maintain the 

referential feature of original symbols – i.e., they stand for something.   Newell and 

Simon (1976) explicitly state that symbols designate other things.  Nonetheless, they 

extend the notion of symbols to pointers in data structures, which can have no reference 

to anything external to the data structure itself.  Pointers really derive their meaning from 
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the structures and processes in which they participate; they do not have external 

reference.  Nonetheless, the idea that symbols have reference continues in discussions.   

For instance, Vera and Simon (1993) assert that "we call patterns symbols when they can 

designate or denote" (p. 9).  On the other hand, one finds people such as Searle (1980) 

and Lakoff (1988) talking about “meaningless symbol manipulation.”  Searle, focusing 

on their physical appearance, refers to them as “meaningless squiggles.”   Harnad (1990), 

in describing what he calls the symbol-grounding problem, asks, “How can the meanings 

of the meaningless symbol tokens, manipulated solely on the basis of their (arbitrary) 

shapes, be grounded in anything but other meaningless symbols?” 

 

Given this lack of agreement on what symbols are, it should come as no surprise that 

there is no consensus about what role symbols play in an explanation of the mind and 

how they should be coordinated with knowledge of brain processing.  The positions can 

be classified according to whether they give an explanatory role to symbols or 

connections.  These are enumerated below with a “+” to indicate an explanatory role and 

a “-” a non-explanatory role. 

 

1. +Symbols, - Connections:  The Classic Symbol Manipulation Position holds that 

the principles by which the mind operates involve transformations of structural properties 

of symbolic representations.  This is the position that symbols are like the symbols that 

appear in LISP (which are basically pointers and, as noted, can be almost devoid of any 

sense of external reference).  The claim is that, while the mind is not a LISP program, 

symbols play the same critical role in the explanation of mind as they do in a LISP 
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program. There are two sub-traditions -- the linguistic tradition, represented by Chomsky 

and Fodor, and the information-processing tradition, represented by Newell and Simon.  

This position has threads in common with the information-processing shortcut described 

earlier and tends to regard the physical processes that realize these symbols as 

unimportant. 

 

2. -Symbols, +Connections:  Eliminative Connectionism views symbols much like 

elements in explicitly stated rules (“If the verb ends in d or t, add ed”) and regards such 

assertions about the mind as, at best, good approximate descriptions of brain 

computations and, at worst, misleading.  This position is called eliminative 

connectionism because it seeks to eliminate symbols in the explanation of cognition.  

This position sees no explanatory role for symbols, just as the classic position sees no 

explanatory role for the brain.   

 

3. +Symbols, + Connections:  Implementational Connectionism believes that 

connectionist computations are organized to achieve symbolic results and that both 

connectionist and symbolic characterizations play an important explanatory role (e.g., 

Shastri and Ajjanagadde, 1993; Smolensky, 1995). One way or another, this view 

assumes that connectionist computations implement symbolic computations. For 

instance, in Smolensky and Legendre’s (2006) Integrated Connectionist/Symbolic 

Architecture (ICS), connectionist calculations can serve to enforce a hierarchy of 

symbolic constraints on grammatical selections. For Smolensky and Legendre, with their 

emphasis on linguistic applications, the symbols are basically the kinds of terms that 
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appear in classic linguistic models such as “verb phrase” or “stressed.”  

 

4. -Symbols, -Connections:  Some researchers have rejected both symbols and 

connections as explanations.  In their place, other explanatory devices are offered, or the 

possibility of explaining the human mind is simply rejected.  Historically, functionalism 

and some varieties of behaviorism, such as that of Skinner, had this characteristic.  More 

recently, some versions of adaptive explanations (see earlier discussion of rational 

analysis) have emphasized the explanation as totally residing in the environment.  

Differing slightly in their emphasis, some versions of situated cognition (e.g., Lave, 

1988; Lave and Wenger, 1991; Greeno, Smith, and Moore, 1992) have also emphasized 

that the explanation resides in what is outside the human.22  

 

In my opinion, debates among these positions have the character of jousting with 

windmills.  Because there is not even agreement about what symbols mean, these debates 

are a waste of time.  

The Symbolic-Subsymbolic Distinction 

 

However, I cannot simply reject all discussion of symbols and use the ACT-R 

architecture, because that architecture makes a distinction between what it calls 

“symbolic” and “subsymbolic” levels. 23  These bear only partial relationships to the 

                                                
22 One might also include dynamical systems (e.g., Thelen and Smith, 1994; van Gelder, 1998) in this 

category as Clark (1997) suggests, but at least some practioners (e.g., Smith and Samuelson, 2003) of this 
approach have argued that their battle with the greater common enemy (the classic symbol manipulation 

approach) means that the connectionist and dynamic systems approach are really complementary. 

 
23 Some apology is in order for having introduced these terms into the theory, I suppose.  It happened as we 

attempted to describe an important distinction in a way that we thought would be meaningful to the 
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terms of the debate about symbols versus connections. The symbolic level in ACT-R is 

an abstract characterization of how brain structures encode knowledge.  The subsymbolic 

level is an abstract characterization of the role of neural computation in making that 

knowledge available.  The following discussion of symbols by Newell captures the 

essence of the symbolic level as we use it in ACT-R and sets the context for also 

understanding ACT-R’s subsymbolic level: 

 

 “Symbols provide distal access to knowledge-bearing structures that are located 

physically elsewhere within the system.  The requirement for distal access is a constraint 

on computing systems that arises from action always being physically local, coupled with 

only a finite amount of knowledge being encodable within a finite volume of space, 

coupled with the human mind’s containing vast amounts of knowledge.  Hence encoded 

knowledge must be spread out in space, whence it must be continually transported from 

where it is stored to where processing requires it.  Symbols are the means that accomplish 

the required distal access.”  (Newell, 1990, p. 427) 

 

Newell identifies the critical role of symbols as knowledge access; there is no mention in 

this quote of the popular image of symbol manipulation with its juggling of symbols, nor 

is there any commitment to whether symbols refer.  He notes that most computation is 

local (true of the brain with its hypercolumns and the like), but information must be 

brought from other locations to influence the local processing (again true of the brain 

with its fiber tracks).  Symbols for Newell provide this distal access.  This is exactly what 

                                                                                                                                            
cognitive science community.  We were not thinking deeply about what the words meant to us or what they 

really meant (or did not mean) in the cognitive science community.    
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they do in ACT-R; one might identify them with fiber tracks in the brain.    

 

While symbols provide distal access so that information can be brought from one location 

to another, there is the question of just what information will be brought and how quickly 

that information will appear.   This is what the subsymbolic level is about.   Symbolic 

structures have subsymbolic quantities associated with them that control how fast they 

are processed and which units get processed at choice points.24   This symbolic-

subsymbolc relationship reflects a very general theoretical approach in science to 

postulate objects with real-value quantities – habits with strengths in Hull’s theory, units 

with activations and link strengths in connectionism, or electrons with energy levels. 

 

The symbolic-subsymbolic distinction has been developed extensively for two modules 

in ACT-R, the declarative and procedural modules.  

 

The Symbolic-Subsymbolic Distinction in the Declarative Module 

 

With respect to the declarative module at the symbolic level, ACT-R has networks of 

knowledge encoded in what we call chunks. Figure 1.9 illustrates a declarative chunk 

encoding a fact from the Berry and Broadbent (1984) sugar factory task.  This structure 

connects an event in that task: a factory had produced 10,000 tons of sugar in the 

previous month, 800 workers were assigned to the factory in the current month, and 

                                                
24 However, be aware that this ACT-R use of “subsymbolic” to designate the numbers under the symbols is 

not the same as the more standard use of “subsymbolic” to refer to the connectionist elements, which are at 

a finer grain size than symbolic units.  The “sub” in the more common usage can be read as “pieces of 

symbols,” whereas in our usage it is the numbers “under the symbols.” 
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7,000 tons of sugar was produced in the current month.   Figure 1.9 illustrates the 

connections that provide Newell’s distal access.   Thus, a query such as, “If the past 

production was 10,000 tons and I use 800 workers, how many tons will I get now?” can 

make contact with the answer of 7,000 tons.    

 

However, what if there were multiple chunks stored with different current output 

associated with 10,000 tons in the past and 800 workers?   What if there was no chunk 

with the answer for this exact query?  One needs to specify the neural processes by which 

an appropriate chunk is selected as an answer.  As Chapter 3 will develop, chunks have 

activations at the subsymbolic level.   The most active chunk will be the one retrieved, 

and its activation value will determine how it is retrieved.  The activation values of 

chunks are determined by computations that attempt to abstract the impact of neural 

Hebbian-like learning and spread of activation among neurons.    Chapter 3 will review 

some of the successes of this mechanism in capturing many aspects of human cognition, 

including performance in the Berry and Broadbent sugar factory task. 

 

The Symbolic-Subsymbolic Distinction in the Procedural Module 

 

As already noted, the procedural module consists of production rules.25  Figure 1.10 

                                                
25 While there is a widely felt discontent with “symbols” and their connotations, there is 
an evenly more widely felt discontent with ‘rules” and their connotations.  I have 
encountered it not only from connectionists, but also from many mathematics educators.   
I have been advised that ACT-R would have greater appeal if I just did not use the phrase 
“production rule” but instead something like “action selection.”   Perhaps such a name 
switch would more accurately reflect what the rules (or the mappings) do, but I fear such 
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illustrates a production rule that might apply in solving the equation 3 + x = 8.   Part (a) 

of Figure 1.10 is an instantiation of the rule for this specific equation.  The rule responds 

to a pattern that appears in a set of modules – in this case, to the encoding of the equation 

by the visual module and the setting of the control state in the goal module to solve that 

equation.  An action is selected that requests the retrieval from declarative memory of the 

difference between 8 and 3 and sets the control state to note a subtraction is occurring.  

As we will discuss throughout the book, it is generally thought that the basal ganglia play 

a critical role in achieving  this pattern recognition, action selection, and action execution. 

 

Part (b) of Figure 1.10 illustrates the general rule that is behind the instance in part (a).  

The rule is not specific to the numbers 3 and 8.   Whatever number appears in the arg1 

slot of the visual buffer is copied to the arg2 slot on the declarative retrieval request.   

Similarly, whatever number appears in the arg2 slot of the visual buffer is copied to the 

arg1 slot of the retrieval request.  Thus, this production is a pattern that specifies how 

information is to be moved from one location to a distal location.  This is symbolic 

exactly in the distal access sense of the Newell quote above. 

 

There are situations (developed in Chapter 4) where multiple production rules might 

apply and the decisions about which rule to apply are determined at the subsymbolic 

level, where production rules have utilities and the production with the highest utility is 

chosen.  The utilities of productions are determined by computations that are designed to 

abstract the essential aspects of the neural reinforcement learning that determines action 

                                                                                                                                            
a name switch now would engender new confusions even greater than the ones it might 
eliminate. 
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selection. 

 

Final Reflections on the Symbolic-Subsymbolic distinction 

 

While the structures in Figures 1.9 and 1.10 are symbolic in the Newell sense, it is hard to 

see how anything in them is symbolic in the sense of “meaningless squiggles” or 

“ungrounded meaningless symbols” or in the sense of “denoting something.” Nothing in 

the production rule in Figure 1.10 is fundamentally different than the pattern-matching 

capabilities of standard connectionist networks, and indeed we created a connectionist 

implementation of an early version of ACT-R (Lebiere and Anderson, 1993).   The links 

in Figures 1.9 and 1.10 simply represent the kinds of connections seen in any neural 

model, albeit at a higher level of abstraction. 

 

It is true that when one looks at the actual code that specifies a model for purposes of 

simulating it, one will see things that look like the cognitive science stereotype of a 

symbol as a piece of text.   Consider the specification of a set of chunks in Table 1.1a for 

the ACT-R simulation program, and compare this with the specification of a 

connectionist network in Table 1.1b.   There is the tendency to confuse the notation of 

either specification with “symbols.”  They are perhaps symbols for the simulation 

program, but they are not the symbols of the ACT-R architecture or the connectionist 

network.26  The ACT-R specification uses the word “workers” and the connectionist 

specification uses the word  “digits,” but in both cases these are just mnemonic labels to 

                                                
26 Actually they are largely not manipulated by the simulation program either, but are notation about how to 

compile the simulation into code that “just does it.” 
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help the person read the code.   Neither model’s behavior would change if some random 

sequence of letters were substituted instead.  Much of the debate about symbols reflects 

confusion between notation and theory.  Of course, the graphic representations in Figures 

1.9 and 1.10 are just notations too.   However, this book will tend to use such graphic 

notations because they tend to better convey the theoretical claims. 

 

The reader may still feel there is some significant difference between the ACT-R 

specification in Table 1.1a and the connectionist specification in Table 1.1b.  There is, 

and it is a difference in the level of abstraction at which the theory is specified.   It is a 

strategic decision in science as to what is the best level of abstraction for developing a 

theory.  In the case of connectionist elements or symbolic structures in ACT-R, the 

question is which level will provide the best bridge between brain and mind and thus 

answer Newell’s question.   In both cases, the units are a significant abstraction from 

neurons and real brain processes, but the gap is probably smaller from the connectionist 

units to the brain.  Similarly, in both cases the units are a significant distance from 

functions of the mind, but probably the gap is smaller in the case of ACT-R units.   In 

both cases, the units are being proposed to provide a useful island in building a bridge 

from brain to mind. The same level of description might not be best for all applications. 

Connectionist models have enjoyed their greatest success in describing perceptual 

processing, while ACT-R models have enjoyed their greatest success in describing 

higher-level processes such as equation solving. 
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To return to the title of this chapter and the book, the function of a cognitive architecture 

is to find a specification of the structure of the brain at a level of abstraction that explains 

how it achieves the function of the mind.   I believe ACT-R has found the best level of 

abstraction for understanding those aspects of the human mind that separate it from the 

minds of other species.  The rest of the book will develop the key aspects of this 

architecture.  Chapter 5, in particular, will address the question of how human minds can 

occur. 
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Appendix:  A Short History of ACT-R 

 

Figure 1.11 provides the history of the ideas that are part of the current ACT-R.   The origins of 

ACT-R can be traced back to two books published in 1973.  The first was Human Associative 

Memory, which I wrote with Gordon Bower, describing the HAM theory of memory.  HAM was 

one of several then-new efforts to create a rigorous theory of complex human cognition by 

specifying the theory with sufficient precision that it could be simulated on a computer.   

Another aspect of this effort that has carried over to modern ACT-R is the idea of a symbolic 

representation for declarative memory.  The proposal in HAM was for a specific propositional 

representation similar to the proposals of Norman and Rumelhart (1975) and Kintsch (1974). 

Propositional representations did not generalize well in many applications, so over time the 

declarative representation has devolved into a more general relational representation. 

 

The second 1973 book was the Carnegie Symposium volume edited in 1973 by Bill Chase that 

contained two landmark papers by Newell.  The first was his famous "You can't play 20 

questions with nature and win" paper, in which he lamented the tendency of cognitive 

psychology to divide the world into little paradigms, each with its own set of questions and logic. 

In his second paper, Newell (1973b) introduced his answer to this dilemma by describing his first 

production system theory of human cognition.  This single system to perform the diverse set of 

tasks that occupied cognitive psychology provided the missing ingredient to convert the inert 

declarative representation of HAM into a functional theory of human cognition. 
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 I combined HAM’s declarative system and Newell’s procedural system into the first version of 

the ACT theory (Anderson, 1976), which went beyond either earlier proposal in assuming that 

there were subsymbolic quantities that controlled access to the declarative and procedural 

elements.   For declarative memory, activation-based quantities were used, inspired by the 

spreading activation model of Collins and Quillian (1972).   For the procedural system, a 

strength quantity was proposed, based on ideas in psychology that have their origins in 

behaviorist theories.   Both of these concepts evolved as we later considered neural realizations 

of these quantities and their role in enabling adaptation to the environment. 

 

In 1983 I published a book describing the ACT* system.  In it, the subsymbolic computations 

were changed to be more consistent with the emerging ideas of connectionism. The source I most 

often referenced was the McClelland and Rumelhart (1981) Interactive Activation Model.  There 

were two other things that ACT* contained that are part of the modern ACT-R theory.   One was 

goal-directed processing – a top-down control to cognition currently served by ACT-R’s goal 

module.    The other was a set of ideas for production learning.  Among these were ideas for 

proceduralization and compositionthat are the basic ideas behind the modern production 

compilation mechanism (see Chapter 4).  

 

I had called the 1983 theory ACT* (pronounced “act star”) in loose analogy to the Kleene star to 

reflect my belief that it was “the final major reformulation within the ACT framework” 

(Anderson, 1983, p. 18).  I said, “my plan for future research is to try to apply this theory wide 

and far, to eventually gather enough evidence to permanently break the theory and develop a 

better one” (p. 19).   As it turned out, I spent much of the period from 1983 to 1993 engaged in 
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two activities.   One of these was the development of a version of intelligent tutoring systems 

called cognitive tutors (for a review of those years see Anderson, Corbett, Koedinger, and 

Pelletier, 1995).   This work, while initially motivated to test the ACT* theory and successful in 

many ways, actually had little direct influence on the theory.   The main outcome for ACT-R of 

that effort was a better technical understanding of how to build production systems.  The other 

effort was already mentioned work on rational analysis of cognition (Anderson, 1990) .  While it 

was started with the intention of abandoning the architectural approach to human cognition, it 

actually wound up establishing an additional theoretical foundation for the subsymbolic level in 

ACT-R.  

 

ACT-R came into being in 1993 with the publication of a new book that was an effort to 

summarize the theoretical progress made on skill acquisition in the intervening 10 years (e.g., 

Singley and Anderson, 1989) and tune the subsymbolic level of ACT-R with the insights of the 

rational analysis of cognition.  The R in ACT-R was to denote the influence of rational analysis.  

Accompanying that book was a computer disk containing the first comprehensive 

implementation of the theory.  The fact that we could produce this implementation reflected both 

our growing understanding (derived from all the production system implementations we had 

produced) and the fact that LISP, the implementation language of these theories, had become 

standardized.   

 

The appearance of generally available, fully functioning code set off a series of events that was 

hardly planned.  The catalyst for this was the emergence of a user community.  Starting in 1994 

on the suggestion of Werner Tack and the insistence of Christian Lebiere, we began holding 
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summer schools and workshops.  The creation of that user community resulted in a whole new 

dynamic to the theory.  One dimension of change was to the language of the theory.  The theory 

became a language spoken among all members of the community, rather than a language spoken 

by authors of the theory to readers of the theory.  This forced a greater standardization and 

consistency and made it possible for a wide range of researchers to contribute to development of 

the theory. 

 

1998 saw the publication of the last book in the ACT series until this one.  The 1998 book 

described ACT-R 4.0, which was a much more mature system than the 1993 ACT-R 2.0.  Past 

books in the series had been planned as writing exercises concurrent with the development of the 

theory and intended to stimulate and discipline that development, whereas ACT-R 4.0 was 

already basically in place when the book was being written. It was written to display a number of 

running models built by different researchers, all working in this architecture.  There were two 

notable changes in the architecture by this time.  First, reflecting the effort of Lebiere and 

Anderson (1993) to create a connectionist simulation of ACT-R, we became aware of the need 

for a pattern matcher that was both more but flexible also more limited in its assumptions about 

the power of the processes that went into matching a single production.   The pattern matcher 

implemented in ACT-R 4.0 represented a serious claim about what could be recognized in 50 ms 

of cognition, and this in turn meant that we could take our production rules more seriously.   

Second, we began producing what I have come to call “end-to-end” simulations that interact with 

the same (typically computer-based) environment that human participants do, and that actually 

do the task.  This prevented us from making hidden assumptions about linkage to the external 

world that can protect a theory from disconfirmation. 
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To enable such end-to-end simulations, we had already began creating perceptual and motor 

interfaces.   As one of these efforts, Mike Byrne had implemented many of the perceptual and 

motor modules from Meyer and Kieras’s (1997) EPIC system into a system called ACT-R/PM – 

the PM standing for perceptual-motor.  It grounded ACT-R in serious models of human 

perception and action and thus enabled the creation of “embodied” ACT-R models.  It became 

apparent that understanding the perceptual-motor aspects of even abstract tasks like algebra was 

essential.  We decided that these perceptual-motor aspects should be fully integrated into the 

theory rather than mere add-ons.   EPIC also had a modular organization; this strongly influenced 

our movement to a modular structure. 

 

Another development pushing ACT-R to a modular organization was our entry into fMRI brain 

imaging research.  Slowly, there emerged the mapping between brain regions and modules that is 

seen in this chapter and throughout the book.  This work has had influence on many aspects of 

ACT-R.   For instance, as described in Anderson (2005), it led to the separation of the imaginal 

and goal modules, which had previously been combined in a single goal module. 

 

Another important event since 1998 was the development of a successful theory of production 

compilation (described in detail in Chapter 4) with Niels Taatgen.  This  brought ideas from the 

1983 ACT* into the modern ACT-R world. With the theory of production compilation, ACT-R 

now has a theory of procedural learning to match the successful theory of declarative learning.  

In addition, we began developing a theory of how such productions could be learned from 

instruction.   This plays a significant role in the model in Figure 1.7 and will be expanded upon 
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in Chapter 5.   An important feature of this is that ACT-R now has a mechanistic explanation of 

how subjects go from the instruction for a task to performance.  (Previously, we just 

programmed in task-specific productions). One of the last remnants of magic had been 

eliminated from the theory. 

 

This brings us pretty much up to date.  The current simulation version of ACT-R is 6.0, written 

and maintained by Dan Bothell.  In part, its creation was motivated by the desire to better 

represent the modular structure in the software and to facilitate the development of new modules.   

That is the history.  I will speculate on the future of ACT-R in the Appendix to the last chapter of 

this book.  
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Table 1.1 

(a) Specifying ACT-R Chunks 

 

(add-dm 

    (Fact1 
    isa addition-fact 
    past 10K 
    workers 800 
    present 7K) 
(Fact2 
    isa addition-fact 
    past 9K 
    workers 900 
    present 9K) 
(Fact3 
    isa addition-fact 
    past 8K 
    workers 1000 
    present 11K)) 
 
 

 

 
(b) Specifying a Connectionist Network 

set hiddenSize 20 
addNet   digits.$hiddenSize 
addGroup input      20          INPUT 
addGroup hidden     $hiddenSize  
addGroup "hidden 2" $hiddenSize OUT_NOISE COSINE_COST 
addGroup output     3           OUTPUT 
connectGroups input hidden -p RANDOM -s 0.5 
connectGroups hidden {"hidden 2"} output 
loadExamples digits.ex  -s "clean set" 
loadExamples digits2.ex -s "noisy set" 
setObj learningRate 0.1 
setObj input.numColumns 4 
autoPlot 
viewUnits 
graphObject 
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Figure Captions 

 

Figure 1.1 An illustration of the analogy between physical architecture and cognitive 

architecture.  (Thanks to Andrea Stocco). 

 

Figure 1.2  (a) The results from a Sternberg experiment and the predictions of the model; 

(a) Sternberg’s analysis of the sequence of information-processing stages in his task that 

generate the predictions in part a. (Sternberg, 1969) 

 

Figure 1.3.  The Rumelhart and McClelland (1986) model for past tense generation.  The 

phonological representation of the root is converted into a distributed feature 

representation.  This representation is converted into a distributed feature representation 

of the past tense, which is then mapped into a phonological representation of the past 

tense. 

 

Figure 1.4. (a) Probability that a mail message is sent from a source as a function of the 

number of days since a message was received from that source (Anderson and Schooler, 

1991); (b) Saving in relearning as a function of delay (Ebbinghaus, 1885). 

 

Figure 1.5. The interconnections among modules in ACT-R 5.0.  From Anderson (2005). 
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Figure 1.6.   Mean solution times (and predictions of the ACT-R model) for the three 

types of equations as a function of delay.  Although the data were not collected, the 

predicted times are presented for the practice session of the experiment (Day 0). 

 

Figure 1.7.           Comparison of the module activity in ACT-R during the solution of a 2-

step equation on Day 1 (part a) with a 2-step equation on Day 5 (part b).  In both cases 

the equation being solved is 7*x+3=38 

 

Figure 1.8.    Use of module behavior to predict BOLD response in various regions:  (a) 

Manual module predicts motor region; (b) Declarative Module predicts prefrontal region; 

(c) Control/Goal module predicts anterior cingulate region; (d) Imaginal/Problem State 

module predicts parietal region; (e) Procedural module (production system) predicts 

caudate region.  The top graph in each figure shows the effect of number of operations 

averaging over days and the bottom graph shows the effect of days averaging over 

operations.  The actual data are connected by dotted lines and the predictions are the solid 

lines. 

 

Figure 1.9.   Representation of a declarative chunk encoding a fact from the Berry and 

Broadbent (1984) sugar factory task. 

 

Figure 1.10.  Illustration of a production rule in ACT-R.  Part (a) illustrates the buffer 

contents might operate upon in a specific case while part (b) illustrates the general pattern 

encoded in the rule that would apply to this case. 
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Figure 1.11  An illustration of the source of the ideas and practices in current ACT-R. 
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Figure 1.1
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Figure 1.2 
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Figure 1.3 

 

Past tense network 
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Figure 1.4 
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 Figure 1.5 
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Figure 1.6 
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Figure 1.7 
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Figure 1.8a 
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Figure 1.8b 

Prefrontal: r = .963
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Figure 1.8c 
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Figure 1.8d 
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Figure 1.8e 
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Figure 1.9 
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Figure 1.10a 

 

 

Figure 1.10b 
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Figure 1.11 


