
Cheat	Sheet:	Linear	Regression	
Measurement	and	Evaluation	of	HCC	Systems	

	

Scenario	
Use	regression	if	you	want	to	test	the	simultaneous	linear	effect	of	several	variables	varX1,	
varX2,	…	on	a	continuous	outcome	variable	varY.	In	this	scenario,	you	are	predicting	varY	with	
varX1,	varX2,	…. 

Power	analysis	for	linear	regression	
- There	are	several	versions	of	power	analysis	for	linear	regression,	but	the	most	versatile	one	

is	“F	tests”,	“Linear	multiple	regression:	Fixed	model,	R2	increase”.	
- A	power	analysis	has	four	variables:	Effect	size,	a	(usually	.05),	power	(usually	.85),	and	N.	If	

you	know	three	of	these,	G*Power	will	calculate	the	fourth.	Select	the	correct	type	of	power	
analysis,	based	on	the	information	you	have,	and	what	you	want	to	find	out.	

- “Number	of	tested	predictors”	is	the	number	of	Xs	that	you	want	to	test	simultaneously.	
Often	you	want	to	test	the	effect	of	an	individual	X,	in	which	case	this	field	should	say	1.	

- “Total	number	of	predictors”	is	the	total	number	of	Xs	in	the	model.	
- By	clicking	on	“Determine”,	you	can	compute	the	effect	size	f2	from	the	partial	R2.	This	is	the	

increase	in	R2	caused	by	the	predictors	you	want	to	test.	
- Click	on	“Calculate”	to	calculate	the	missing	parameter.	

Plotting	scatterplots	with	linear	trend	line	
- Use	the	ggplot2	package	to	plot	a	scatterplot	with	a	linear	trend	line.	

ggplot(data, aes(varX1, varY)) + geom_point() + geom_smooth(method=”lm”, 
color=”red”, se=F)		

- (optional)	To	add	a	mean	line,	add:	
+ geom_line(aes(y = mean(data$varY)), color=“blue”		

- Visually	inspect	if	the	relationship	is	indeed	a	linear	one	(see	assumptions).	You	can	also	
check	if	the	scatterplot	has	a	funnel	shape,	which	may	suggest	heteroscedasticity	(see	
assumptions).	Repeat	this	procedure	for	varX2,	etc.	



	

Pre-testing	assumptions	
- In	a	linear	regression,	Y	should	be	independent,	continuous,	and	unbounded.	The	error	

variance	should	be	normally	distributed,	which	is	true	if	Y	is	normally	distributed.	
- If	your	N	is	small:		

o Test	for	significant	skewness,	kurtosis,	and	Shapiro-Wilk	test	using	stat.desc	in	the	
pastecs	package.	
stat.desc(data$varY, basic=F, norm=T)	

o Multiply	skew.2SE	and	kurt.2SE	by	2	to	get	the	Z-scores	of	skewness	and	kurtosis.	
Compare	these	values	to	typical	cut-off	values	(Z	>	±1.96:	p	<	.05,	Z	>	±2.58:	p	<	.01,	Z	>	
±3.29:	p	<	.001).	The	significance	of	the	Shapiro-Wilk	test	is	listed	under	normtest.p.		

- If	your	N	is	large:		
o Draw	the	histogram	for	varY,	overlaid	with	normal	curves	(using	ggplot2),	and	visually	

inspect	whether	they	follow	the	normal	distribution:	
ggplot(data, aes(varY)) + geom_histogram(aes(y=..density..), binwidth=1, 
color="black", fill="white") + stat_function(fun = dnorm, args = 
list(mean = mean(data$varY), sd = sd(data$varY)))	

o Change	the	binwidth	setting	based	on	what	is	suitable	for	your	data.	
o Draw	normal	a	Q-Q	plot,	and	visually	inspect	whether	the	data	follows	the	diagonal	line:	

qplot(sample = data$varY, stat=”qq”)	
- If	you	have	dummy	variables	(see	below),	you	want	to	test	normality	within	each	group	(see	

the	t	test	and	ANOVA	cheat	sheets).	
- If	your	data	has	positive	skew,	and	your	data	only	has	positive	values,	you	can	possibly	fix	

this	by	transforming	your	Y	variable:	
o Log	transform:	

data$varYlog <- log(data$varY + 1)	
o Or,	square	root	transform:	

data$varYsqrt <- sqrt(data$varY)	
- In	other	cases	of	violations	of	assumptions,	you	can	conduct	a	robust	test	(see	below).	
- Aside	from	normality,	you	also	need	to	test	for	linearity,	homoscedasticity	and	a	lack	of	

multicollinearity.	You	can	do	this	after	the	test	using	the	residual	plots	of	the	model.	

(optional)	Preparing	dummy	variables	
- If	one	or	more	of	your	Xs	are	nominal	variables,	you	need	to	create	dummy	variables	for	

them.	R	does	this	automatically,	as	long	as	the	nominal	Xs	are	coded	as	factors.	If	they	are	
coded	as	numerical	values	(e.g.	1,	2,	3…),	you	can	recode	them	as	factors	using	the	revalue	



function	in	the	plyr	package:	
data$varX1 <- revalue(as.factor(data$varX1), c(“1”=”cat1”, “2”=”cat2”))	

- cat1	and	cat2	are	descriptive	names	of	the	different	categories	of	the	variable.	You	can	
revalue	more	categories	if	needed.	

- R	automatically	selects	a	baseline	category	against	which	all	other	categories	are	compared.	
If	it	chooses	this	category	incorrectly,	you	can	relevel	the	variable,	e.g.,	to	make	cat1	the	
baseline	category:	
data$varX1 <- relevel(data$varX1, ref=”cat1”)	

- Note	that	when	you	have	a	nominal	variable	with	more	than	two	categories,	the	
automatically	created	dummies	form	a	non-orthogonal	contrast.	This	means	that	you	should	
apply	a	correction	(e.g.	Bonferroni,	Holm,	or	Benjamini-Hochberg)	to	the	p-values	of	these	
contrasts.	Alternatively,	you	can	create	orthogonal	contrasts	for	such	variables.	Both	are	
discussed	in	the	ANOVA	cheat	sheet.	

Running	the	test	
- Run	the	regression	model	as	follows	(include	additional	Xs	if	needed):	

model1 <- lm(varY ~ varX1 + varX2, data = data)	
- Get	the	model	summary:	

summary(model1) 
- In	terms	of	overall	model	fit,	this	output	will	give	you	the	Multiple	R-squared,	which	is	the	

proportion	of	the	variance	of	varY	explained	by	the	model.	The	Adjusted	R-squared	is	the	
expected	R2	if	the	test	were	to	be	repeated.		

- The	F-statistic	and	its	p-value	tells	us	whether	the	model	makes	a	significantly	better	
prediction	than	the	grand	mean.	

- Each	coefficient	represents	the	effect	of	an	X	on	Y,	given	all	the	other	Xs.	If	X	
increases/decreases	by	1,	Y	is	expected	to	increase/decrease	by	this	amount.	For	dummy	
variables,	the	coefficient	represents	the	difference	in	Y	between	this	category	and	the	
baseline	category.	

- Each	coefficient	has	a	t	test	and	a	p-value	to	test	if	the	effect	is	significant.	Divide	the	p-value	
by	2	if	you	were	conducting	a	one-sided	test	(i.e.	if	you	had	a	directional	hypothesis).	You	can	
get	the	effect	size	r	using	the	formula	r	=	√(t2	/	t2	+	df)).	

- You	can	get	confidence	intervals	for	the	coefficients	using	the	confint	function:	
confint(model1)	

- To	compare	the	effects	of	different	Xs,	you	need	to	standardize	them	using	lm.beta	in	the	
QuantPsyc	package:	
lm.beta(model1) 
This	gives	you	the	beta	coefficients.	If	X	increases/decreases	by	1	standard	deviation,	Y	is	



expected	to	increase/decrease	by	this	proportion	of	its	standard	deviation.	Note:	this	does	
not	work	for	dummy	variables.	

(optional)	Robust	versions	
- You	can	bootstrap	the	regression	coefficients	(the	bs)	of	a	linear	regression.	First	create	a	

function	for	running	the	bootstrap	sample	(include	additional	Xs	if	needed):	
bootFun <- function(sample,i){ 
 fit <- lm(varY~varX1+varX2, data=sample[i,]) 
 return(coef(fit)) 
}	

- Then	run	the	bootstrap	sample	over	the	function	2000	times:	
bootResult <- boot(data, bootFun, 2000)	

- Get	the	output;	the	original	column	shows	the	regression	coefficient	in	the	original	
sample,	the	bias	column	shows	the	difference	between	this	and	the	coefficient	in	the	
bootstrap	sample,	and	the	std. error	column	shows	the	bootstrapped	standard	error.	Row	
t1* shows	the	intercept,	the	subsequent	rows	show	the	coefficient	b	for	each	X:	
bootResult	

- Get	the	confidence	interval	of	the	first	coefficient;	the	BCa	version	is	the	most	robust	variant:	
boot.ci(bootResult,index=2)	

- Repeat	with	index=3	etc.	for	the	other	coefficients.	

(optional)	Testing	additional	variables	
- In	any	regression,	always	first	decide	on	your	outcome	variable	(Y)	and	the	most	important	

Xs.	For	additional	Xs,	only	include	them	if	they	correlate	with	Y.	Do	not	include	Xs	that	are	
correlated	too	highly	with	any	of	the	other	Xs	(r	>	.8	or	r	<	–.8),	because	this	may	lead	to	
multicollinearity	(see	below).	

- If	these	additional	Xs	have	a	clear	hierarchy	(some	are	more	interesting	than	others),	then	
add	them	step-by-step	in	order	of	importance.	Otherwise,	add	them	all	at	once	and	remove	
non-significant	ones	one-by-one.	

- Models	with	more	Xs	always	have	a	higher	R2.	You	can	test	whether	this	increase	in	R2	is	
significant	using	an	F-ratio	test:	
anova(model1,model2)	

- Do	not	forget	to	assess	the	b	estimates	of	the	new	model.	Even	the	b	estimates	for	the	old	
parameters	may	have	changed,	especially	when	the	new	Xs	are	correlated	with	the	old	Xs.	

Post-testing	assumptions	
- Run	the	plots	of	the	model:	

plot(model1)	



- The	first	plot	shows	the	residuals	e	at	different	levels	of	Y.	If	this	plot	is	funnel-shaped,	you	
have	heteroscedasticity.	If	the	red	mean	line	is	not	a	straight	line,	you	have	non-linearity.	

- The	next	plot	shows	the	normal	Q-Q	plot	of	the	residuals.	If	they	deviate	strongly	from	the	
diagonal	line,	you	have	non-normality.	

- With	any	of	these	problems,	you	can	possibly	fix	this	by	transforming	your	Y	variable	(see	
“Pre-testing	assumptions”),	or	by	running	a	bootstrapped	regression	(see	“Robust	versions”).	

- Test	for	multicollinearity	of	your	Xs	using	the	Variance	Inflation	Factor	(VIF);	these	should	be	
below	5:	
vif(model1)	

- Check	the	average	VIF.	Ideally	this	should	be	1,	but	values	close	to	(say,	up	to	1.5)	are	
permissible:	
mean(vif(model1))	

- If	you	find	any	problems,	some	of	your	Xs	are	probably	highly	correlated	with	each	other.	
Remove	one	of	these	Xs	and	start	over.	

Inspecting	outliers	
- Save	the	standardized	residuals	to	your	data:	

data$rstand <- rstandard(model1)	
- Create	a	filter	for	large	standardized	residuals:	

data$rstand.large <- (data$rstand > 1.96 | data$rstand < -1.96)	
- Inspect	these	outliers:	

data[data$rstand.large,]	
- If	these	outliers	comprise	more	than	5%	of	the	data,	you	have	too	many	data	for	which	the	

model	does	not	fit	very	well.	Moreover,	if	more	than	1%	of	the	data	has	an	rstand	>	2.58,	
you	have	too	many	data	for	which	the	model	is	a	very	poor	fit.	Finally,	any	data	with	an	
rstand	>	3.29	are	extreme	outliers:	they	will	likely	have	to	be	removed.	

- Save	Cook’s	distances,	hat	values	(leverage),	and	covariance	ratios	to	your	data:	
data$cook <- cooks.distance(model1) 
data$leverage <- hatvalues(model1) 
data$covratio <- covratio(model1)	

- Check	out	the	Cook’s	distances,	hat	values,	and	covariance	ratio	for	the	data	with	a	large	
residual:	
data[data$rstand.large,c(“cook”, “leverage”, “covratio”)]	

- Cook’s	distance	should	be	smaller	than	1,	leverage	should	be	smaller	than	3*(k+1)/N),	and	
the	covariance	ratio	should	be	between	1-(3(k+1)/N)	and	1+(3(k+1)/N),	where	k	is	the	
number	of	Xs,	and	N	is	the	sample	size.	

- These	metrics	are	a	bit	sensitive	to	sample	size,	so	for	large	samples,	focus	on	the	Cook’s	
distance.	In	case	of	problems,	you	can	possibly	fix	this	by	removing	the	offending	data	point,	



transforming	your	Y	variable	(see	“Pre-testing	assumptions”),	or	running	a	bootstrapped	
regression	(see	“Robust	versions”).	

Reporting	
- Create	a	table	to	report	your	regression	model(s);	in	the	example	below,	model	1	has	two	

continuous	Xs,	and	model	2	adds	a	continuous	X	and	a	nominal	X	with	3	categories:	
	

	 DR2	 B	 SE	B	 b	 P	
Model	1	 [R2]	 	 	 	 [p-value	of	model	F-test]	
Constant	 	 [estimate]	 [std.	error]	 	 	
[varX1]	 	 [estimate]	 [std.	error]	 [beta	coef.]	 [p-value]	
[varX2]	 	 [estimate]	 [std.	error]	 [beta	coef.]	 [p-value]	

Model	2	 [R2	increase]	 	 	 	 [p-value	of	F-ratio	test	
between	model	1	and	2]	

Constant	 	 [estimate]	 [std.	error]	 	 	
[varX1]	 	 [estimate]	 [std.	error]	 [beta	coef.]	 [p-value]	
[varX2]	 	 [estimate]	 [std.	error]	 [beta	coef.]	 [p-value]	

[varX3]	 	 [estimate]	 [std.	error]	 [beta	coef.]	 [p-value]	
[varX4]	
baseline:	[cat1]	
[cat2]	
[cat3]	

	 	
	
[estimate]	
[estimate]	

	
	
[std.	error]	
[std.	error]	

	 	
	
[p-value]	
[p-value]	

	
- You	can	additionally	highlight	and	explain	individual	effects:	

o “Controlling	for	[varX2],	[varX3],	and	[varX4],	each	1	point	increase	in	[varX1]	is	related	to	
[estimate]	points	increase	in	[varY],	t([deg.	freedom])	=	.xx,	p	=	.xxx.”	

o “Controlling	for		[varX1],	[varX2],	and	[varX3],	participants	with	[cat2]	had	a	[estimate]	
points	higher	[varY]	than	participants	with	[cat1],	t([deg.	freedom])	=	.xx,	p	=	.xxx.”	


