
Cheat Sheet: Logistic Regression 
and Poisson and Ordered Logistic Regression 
Measurement and Evaluation of HCC Systems 

 

Scenario 
Use regression if you want to test the simultaneous linear effect of several variables varX1, 
varX2, … on a binary (logistic), count (Poisson) or ordinal (ordered logistic) outcome variable 
varY. In this scenario, you are predicting varY with varX1, varX2, …. Note that for the Poisson 
distribution to hold, counts should be decreasing in frequency (many zeros, fewer ones, even 
fewer twos, etc.). 

Power analysis for logistic regression 
- Power analysis for logistic regression is beyond the scope of this course. 

Plotting scatterplots with linear trend line 
- See the linear regression cheat sheet for creating scatterplots, and/or the t test and ANOVA 

cheats for creating bar charts, line charts, and box plots. 
- (logistic regression only) If your Y variable is has nominal values (e.g. “A” and “B” instead of 0 

and 1), you can turn it into a numeric variable by using as.numeric(varY == “B”). 
- For error bars, use mean_cl_boot instead of mean_cl_normal. 

Pre-testing assumptions  
- Make sure that your Y is independent. Normality is not required here. 

 (optional) Preparing dummy variables 
- This is exactly the same as linear regression. 

Running the test 
- Run the regression model as follows (include additional Xs if needed): 

o Logistic regression: 
model1 <- glm(varY ~ varX1 + varX2, data = data, family = binomial) 

o Poisson regression: 
model1 <- glm(varY ~ varX1 + varX2, data = data, family = poisson) 



o Ordered Logistic regression: 
model1 <- polr(factor(varY) ~ varX1 + varX2, data = data, Hess=T) 
For the latter, also run a null model: 
model1.null <- polr(factor(varY) ~ 1, data = data, Hess=T) 

- You can test the improvement of the model with a c2-statistic (similar to the F-statistic in 
linear regression). 
o First calculate the likelihood ratio (for ordered logistic regression, use 

model1.null$deviance instead of model1$null.deviance): 
ratio <- model1$null.deviance – model1$deviance 

o Then calculate the degrees of freedom (for ordered logistic regression, use 
model1.null$df.residual instead of model1$df.null): 
df <- model1$df.null – model1$df.residual 

o Finally, calculate the p-value: 
1-pchisq(ratio, df) 

- You can also calculate the model R2; there are 3 versions (for ordered logistic regression, use 
model1.null$deviance instead of model1$null.deviance): 
o Hosmer-Lemeshow:  

ratio / model1$null.deviance 
o Cox-Snell: 

1 – exp(-ratio / dim(data)[1]) 
o Nagelkerke: 

(1 – exp(-ratio / dim(data)[1])) / (1 – exp(-model1$null.deviance / 
dim(data)[1])) 

- Get the model summary: 
summary(model1) 

- Interpret the coefficients: 
o For logistic regression, the probability of Y is given as P(Y) = 1/(1+e–(a+b1*varX1+b2*varX2+…)). 

eb is the odds ratio in Y of a 1-point increase in X, or, if X is a dummy variable, the odds 
ratio in Y between this category and the baseline category. 

o For Poisson regression, the rate of Y is given as Y = ea+b1*varX1+b2*varX2+…. 
eb is the rate ratio in Y of a 1-point increase in X, or, if X is a dummy variable, the rate 
ratio in Y between this category and the baseline category. 

o For ordered logistic regression, the probability of Y being a certain value or higher is 
given as P(Y) = 1/(1+e–(a+b1*varX1+b2*varX2+…)), where a consists for k–1 thresholds. 
eb is the odds ratio in Y being a certain value or higher of a 1-point increase in X, or, if X is 
a dummy variable, the odds ratio in Y being a certain value or higher between this 
category and the baseline category. 



o You can easily get eb and its confidence interval: 
exp(model1$coefficients) 
exp(confint(model1)) 

o You can interpret eb = 1.xx as an xx% increase in Y for each increase in X. You can 
interpret eb = 0.xx as a (100-xx)% decrease in Y for each increase in X. You can interpret 
eb = x.xx as an x.xx-fold increase in Y for each increase in X. If you want to get the effect 
on Y for a decrease in X, you can calculate 1/eb. 

- Each coefficient has a t test and a p-value to test if the effect is significant. Multiply the p-
value by 2 if you were conducting a one-sided test (i.e. if you had a directional hypothesis). 

(optional) Robust versions 
- Bootstrapping works the same as in linear regression, so refer to that cheat sheet. 
- You can also use a sandwich estimator of the standard error using the package sandwich. 

This also works for regular linear regression! 
cov.model1 <- vcovHC(model1, type="HC0") 
std.err <- sqrt(diag(cov.model1)) 
pval <- 2 * pnorm(abs(coef(model1)/std.err), lower.tail=F) 
LL <- coef(model1) - 1.96 * std.err 
UL <- coef(model1) + 1.96 * std.err 
Here, std.err is the robust standard error, pval is the robust p-value, and LL and UL are the 
lower and upper limits of the robust confidence interval. 

(optional) Testing additional variables 
- This is the same as linear regression, so refer to that cheat sheet. 
- The only difference is that the ANOVA test of the difference between two models does not 

produce a p-value. This p-value can be calculated as follows: 
1-pchisq(model1$deviance – model2$deviance, model1$df.residual – 
model2$df.residual) 

Post-testing assumptions and inspecting outliers 
- This is exactly the same as for linear regression, so refer to that cheat sheet. 

Reporting 
- This is also the same as for linear regression, but with three differences: 

o Report not just b and SEb, but also the odds ratio (eb), and maybe its confidence interval. 
o Make sure to report an R2 (Nagelkerke is most common) and the model c2. 
o Also report DR2 and the c2 difference test if you compare multiple models. 
o In the textual explanation, report on your coefficients as odds ratios (eb). 


