
Cheat	Sheet:	Correlation	
Measurement	and	Evaluation	of	HCC	Systems	

	

Scenario	
Use	correlation	if	you	want	to	test	the	linear	association	between	two	continuous	variables	
variables	var1	and	var2	in	your	dataset	data.	

Power	analysis	for	correlation	
- Use	Test	family	“Exact”,	“Bivariate	normal	model”.	
- A	power	analysis	has	four	variables:	Effect	size,	a	(usually	.05),	power	(usually	.85),	and	N.	If	

you	know	three	of	these,	G*Power	will	calculate	the	fourth.	Select	the	correct	type	of	power	
analysis,	based	on	the	information	you	have,	and	what	you	want	to	find	out.	

- “Correlation	r	H1”	is	the	effect	size.	It	is	the	same	as	r.	“Correlation	r	H0”	is	the	null	
hypothesis,	which	is	typically	zero.	

- Make	sure	you	select	a	one-	or	two-tailed	test	based	on	your	hypothesis.	If	you	hypothesize	
a	particular	direction	(positive	or	negative	correlation),	use	a	one-tailed	test.	If	you	
hypothesize	any	correlation,	use	a	two-tailed	test.	

- Click	on	“Calculate”	to	calculate	the	missing	parameter.	

Plotting	a	scatterplot	with	linear	trend	line	
- Use	the	ggplot2	package	to	plot	a	scatterplot	with	a	linear	trend	line.	

ggplot(data, aes(var1, var2)) + geom_point() + geom_smooth(method=”lm”, 
color=”red”, se=F)		

- (optional)	To	add	a	mean	line,	add:	
+ geom_line(aes(y = mean(data$var2)), color=“blue”		

- Visually	inspect	if	the	relationship	is	indeed	a	linear	one.	

Pre-testing	assumptions	
- Correlation	is	valid	for	independent	interval	data;	the	significance	test	requires	that	both	

variables	are	normally	distributed.	
- If	your	N	is	small:		

o Test	for	significant	skewness,	kurtosis,	and	Shapiro-Wilk	test	using	stat.desc	in	the	
pastecs	package.	
stat.desc(data$var1, desc=F, norm=T)	



o Multiply	skew.2SE	and	kurt.2SE	by	2	to	get	the	Z-scores	of	skewness	and	kurtosis.	
Compare	these	values	to	typical	cut-off	values	(Z	>	±1.96:	p	<	.05,	Z	>	±2.58:	p	<	.01,	Z	>	
±3.29:	p	<	.001).	The	significance	of	the	Shapiro-Wilk	test	is	listed	under	normtest.p.	
Repeat	the	procedure	for	var2.	

- If	your	N	is	large:		
o Draw	the	histograms	for	the	two	variables,	overlaid	with	normal	curves	(using	ggplot2),	

and	visually	inspect	whether	they	follow	the	normal	distribution:	
ggplot(data, aes(var1)) + geom_histogram(aes(y=..density..), binwidth=1, 
color="black", fill="white") + stat_function(fun = dnorm, args = 
list(mean = mean(data$var1), sd = sd(data$var1)))	

o Change	the	binwidth	setting	based	on	what	is	suitable	for	your	data.	Repeat	the	
inspection	for	var2.	

o Draw	normal	Q-Q	plots,	and	visually	inspect	whether	the	data	follows	the	diagonal	line:	
qplot(sample = data$var1, stat=”qq”)	

o Repeat	this	inspection	for	var2.	
- If	your	data	has	positive	skew,	and	your	data	only	has	positive	values,	you	can	possibly	fix	

this	by	transforming	your	data,	using	a	transform:	
o Log	transform:	

data$var1log <- log(data$var1 + 1)	
o Or,	square	root	transform:	

data$var1sqrt <- sqrt(data$var1)	
o Repeat	the	normality	tests	for	the	transformed	variables.	

- In	other	cases	of	violations	of	assumptions,	you	can	conduct	a	robust	test	(see	below).	

Running	the	test	
- If	you	want	to	run	a	single	correlation,	with	p-values	and	confidence	intervals,	use	cor.test:	

cor.test(data$var1, data$var2)	
- This	test	gives	you	the	correlation,	the	t	statistic,	p-value,	and	a	95%	confidence	interval.	

Divide	the	p-value	by	2	if	you	were	conducting	a	one-sided	test	(i.e.	if	you	had	a	directional	
hypothesis).	

- (optional)	If	you	want	to	run	several	correlations	at	once,	with	p-values,	use	rcorr	in	the	
Hmisc	package:	
rcorr(as.matrix(data[ , c(“var1”, ”var2”, “var3”)]))	

- One	variable	that	is	not	reported,	is	R2.	This	variable	can	be	interpreted	as	the	proportion	of	
shared	variation	between	var1	and	var2.	You	can	calculate	it	by	squaring	the	correlation	
coefficient	(r	*	r).	



(optional)	Robust	correlation	
- For	ordinal	or	non-normal	data,	use	Kendall’s	Tau.	The	interpretation	is	the	same	as	for	a	

regular	correlation:	
cor.test(data$var1, data$var2, method=”kendall”) 

- You	can	also	use	a	bootstrapped	correlation.	This	works	for	both	the	regular	(Pearson)	
correlation	and	Kendall’s	Tau.	
o First	create	a	function	for	running	the	bootstrap	sample:	

bootFun <- function(sample,i) cor(sample$var1[i],sample$var2[i], 
method=”kendall”)		

o Then	run	the	bootstrap	sample	over	the	function	2000	times:	
bootResult <- boot(data, bootFun, 2000)	

o Get	the	output;	the	original	column	shows	the	correlation	in	the	original	sample,	the	
bias	column	shows	the	difference	between	this	and	the	correlation	in	the	bootstrap	
sample,	and	the	std. error	column	shows	the	bootstrapped	standard	error:	
bootResult	

o Get	the	confidence	interval;	the	BCa	version	is	the	most	robust	variant:	
boot.ci(bootResult)	

(optional)	Controlling	for	other	variables	(partial	correlation)	
- With	“partial	correlation”	you	can	get	the	correlation	between	var1	and	var2,	controlling	for	

the	variability	that	is	explained	by	var3	(and	more	variables,	if	required).	You	can	run	partial	
correlation	using	the	pcor	function	in	the	ggm	package:	
pc <- pcor(c(“var1”, “var2”, “var3”, var(data))	

- Get	the	output:	
pc 

- Do	a	t	test	on	the	partial	correlation	using	pcor.test;	q	is	the	number	of	variables	you	are	
controlling	for,	N	is	the	sample	size:	
pcor.test(pc,q,N)	

Reporting	
- Use	one	of	the	following	phrasings	to	report	on	a	correlation	(replace	the	full	names	(not	just	

the	variable	names)	of	var1	and	var2,	and	replace	the	xx’es	with	the	actual	numbers:	
o “[var1]	was	significantly	correlated	with	[var2],	r	=	.xx,	p	=	.xxx”	
o “There	was	a	significant	relationship	between	[var1]	and	[var2],	r	=	.xx,	p	=	.xxx”	
o “[var1]	was	significantly	related	to	[var2],	r	=	.xx,	p	=	.xxx”	

	


