Factorial ANOVA

Testing more than one manipulation



Factorial ANOVA

Today's goal:
Jeach you about factorial ANOVA, the test used to

evaluate more than two manipulations at the same time

Outline:
— Why Factorial ANOVA?
— Factorial ANOVA in R

— Different types of sums of squares

— Contrasts and simple effects



Why factorial ANOVA?

the idea of interaction effects



Factorial ANOVA

Perceived quality
Iwo manipulations at the 06

same time: O low diversification
o high diversification
VWhat is the combined

effect of list diversity and o
ist length on perceived
recommmendation quality? 2
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Test for the interaction
eH:eCt! sitems 10 items 20 items

Willemsen et al.: “Understanding the Role of Latent Feature Diversification

on Choice Difficulty and Satisfaction”, submitted to UMUAIl



Factorial ANOVA

Interaction effect: Perceived quality

‘S-item lists have a higher  ©°

perceived quality than 10- 05
or 20-item lists, but only o4
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Willemsen et al.: “Understanding the Role of Latent Feature Diversification

on Choice Difficulty and Satisfaction”, submitted to UMUAIl



Explanation

Example: effect of font size (smal, large) and background

color (BB, white) on readability (0-100)

|t there is no interaction eftect, we consider a regression
model like this:

Yi =ad T b1><n T b2><2i S

—ont size: X1 = 1tor large, X; = O for small

Sackground color: X5 =1 for white, X, = O for blue

b1 difference between small and large (for any color)

h,: ditference between blue and white (for any size)



Explanation

100 small vs. Targe

10

Let’s say a =30, b1 =10, and b, = 25
Yi=30+10" Xy + 25" X5 + e smal Large
Small, blue: readability = 30+1070+2570 = 30

Large, blue: readability = 20+1071+2570 = 40

Small, white: readability = 30+10"0+25™1 = 55
|arge, white: readability = 30+10™1+25™1 = 65



Explanation

100

Let’s say a =30, b1 =10, and b, = 25
Yi=30+10" Xy + 25" X5 + e smal Large
Small, blue: readability = 30+1070+2570 = 30

Large, blue: readability = 20+1071+2570 = 40

Small, white: readability = 30+10"0+25™1 = 55
|arge, white: readability = 30+10™1+25™1 = 65



Explanation

|t there is an interaction eftect, we consider a regression
model like this:

Yi=a+ b Xy + b2Xa + bs XiXaot e
~ont size: X; =1 for large, X; = 0 for small
Background color: X, =1 for white, X, = O tor blue

a: value in baseline condition (blue + small)
br: difference between small and large (for blue only)

h,: ditference between blue and white (for small only)

hs: extra difference between small and large for white, or
extra ditference between blue and white tor large



Explanation

, 2
Lets say a =30, b1 =10, b, =20, bs =15
0
Yi=30 + 10" X5 + 207 X5 + 157 X1 X5+ € Small Large

small vs. large

100

Small, blue: readability = 30+1070+2070+1570*0 = 30

Large, b

Small, w

ue: readability = 20+10™1+2070+15"170 = 40

hite: readability = 30+1070+20™1+1570™1 = 50

_arge, white: readability = 30+10™1+20™1+15™171 = 75



Explanation

blue vs. white

199 (different for each size)
8O
BO 354
40 e 20 )

, 20
Lets say a =30, b1 =10, b, =20, bs =15

Yi=30+ 107X + 20" X5 + 15*XHX21+O@ Small Large
Small, blue: readability = 30+1070+2070+1570*0 = 30
Large, blue: readability = 30+1071+20"0+15"170 = 40
Small, white: readability = 30+10"0+20*1+15701 = 50

_arge, white: readability = 30+10™1+20™1+15™171 = 75



Implications

Whether you have a signiticant interaction depends on the
significance of bs

b1 and b, are uninterpretable without bs

Sefore, by represented the effect of X;

Now, there is no single “effect of X;", because it depends
on X, (and vice versa)

You can't have bz in the model without by and bs

Since bz is an additional effect, it relies on by and b>



Implications

Calculating differences between groups becomes trickier:
— Ditt. small and large text for blue background: b
— Ditt. blue and white background ftor small text: b,

— Ditt. small and large text tfor white background: by + bs
— Ditf. blue and white background for large text: b, + bs

Some involve 2 b, so you can't check their significance
_uckily there are tests for that

Or, you can re-code your dummies!



Explanation

Types of effects:

Super-additive, e.g.: a = 30, by =

10, b, =20, b3 =15

Sub-additive, e.g. a = 30, b1 = 10, by = 20, bz = =5

Cross-over, e.g.a =30, by = 10,

Double cross-over, eqg: a = 30,

----------------------------------------------- 100 100
----------------------------------------------- S — -«
------------------------------------ 60 o 60
40 - 40
- i I 0
0 0

D, = 20, bs = =15

b1 =10, by = 20, bz = =30




Explanation

Types of effects:
Super-additive, eg.a = 30, b1 = 10, by = 20, bs = 15
Sub-additive, e.g. a = 30, b1 = 10, by = 20, bz = =5
Cross-over, e.g: a =30, by = 10, by = 20, bz = 15
Double cross-over, e.g:a=30,by =10, b, = 20, bs = =30

100 100 100 100
30 30 30 30
o0 o0 o0 60

40 ‘/‘ 40 ./. 40 '/. 40 ./.
20 20 20 20
0 0] 0 0

Small Large Small Large Small Large Small Large



Orthogonal spec

We can also build this model orthogonally:
Yi=a+ b Xg+ boXo+ bsXyXot e
—ont size: X; = 0.5 for large, X; = =0.5 for small

Sackground color: X5 = 0.5 for white, X, = =0.5 for blue

a: grand mean

b1 average difference between small and large

h,: average ditference between blue and white

hs: extra difference between small and large for white, or
extra ditference between blue and white tor large



Orthogonal spec

(different for each color)
30

25
60 i

40 1Q A
20

Now, a = 48.75, by = 175, by = 275, bz = 15 ./.
0

Yi=4875+10"Xqi + 207 X5 + 157 X4 Xoi+ e Smal Large
Small, blue: 48.75+175"-0.5+275"-0.5+15"-0.5"-0.5 = 30
Large, blue: 48.75+17570.5+275"-0.5+15"0.5"-0.5 = 40
Small, white: 48.75+175"~0.5+2750.5+15"~0.570.5 = 50
Large, white: 4875+17570.5+27570.5+1570.570.5 = 75




Sum of Squares

Variance Variance Variance
explained explained explained by
by A by B the
interaction
between A

and B



Sum of Squares

Formulas for A (r groups) and B (s groups):

SSt: same as for reqgular ANOVA:
55t = s2(N-1)

SSr: also the same, kis all r*s combinations of A and B:

> 52 (Ni=1), with n—k df

SSm: also the same; sum of squares over r’'s group means:

> nk(meank — grand mean)2, with k-1 df



Sum of Squares

SSa: sum of squares over r group means:

> ni{mean; — grand mean)?, with r-1 df

SSb: sum of squares over s group means:

> ns(means — grand mean)?, with s-1 df

SSab: what is left over:
SSM-55a-55b, with (r-1)(s-1) df



Mean Squares and F

Mean squares:

MSa = 55a/df,
MSb = SSb/dfy
MSab = SSab/dfab
MSr = SSr/df,

- ratios:

—a = MSa/MSr (with df,, dfy degrees of freedom)
-b = MSb/MSr (with dfy, dfi degrees of freedom)
-ab = MSab/MSr (with dfab, dfy degrees of freedom)




| essons learned

A factorial ANOVA is a reqular ANOVA, but with the SSm

divided into each factor and their interaction(s)

2 variables: SSm = SSa + SShb + 55ab

Zvariables: SSm = SSa + SSb + SSc + S5ab + S5ac + SSbce
+ SSabc




| essons learned

A factorial ANOVA is a regression model with interaction
term(s)

e.g. 2x2: Xi represents A, X, represents B:
Yi=a+ b Xy + baXoi+ b X Xot e

e.g. 3x2: X1 and X, represent A, Xs represents B:
Yi=a+ b Xg+ boXo + bsXs + baXiiXs + bs XoiXs + @



| essons learned

e.g. 3x3: Xy and X; represent A, Xs and X4 represent B:

Yi =at b1><1i T b2><2i T b3><31 T b4><4i T b5><1i><3i T b6><2i><3i T
b7><1i><4i T b8><2i><4i T e

e.q. 2x2x2: Xi represents A, X, represents B, Xs represents C:

Yi =ad T b1><1i + b2><2i T b3><31 T b4><1i><2i T b5><1i><3i T b6><2i><3i
+ b7><1i><2i><3i T e



Factorial ANOVA in R

because too many XiiX2iX35iX4i X5 Xei...



Factorial in R

Dataset “goggles.csv”

Fffect of beer consumption on mate attractiveness

Variables:
gender: gender of the participant

alcohol: amount of alcohol consumed

attractiveness: attractiveness of the person they want to
go home with at the end of the night (%)



Plotting

Relevel the alcohol variable to make “None” the baseline:

goggles$alcohol <- relevel(goggles$alcohol, ret="None")

Line plot with bootstrapped Cls:

ggplot(goggles, aes(alcohol, attractiveness, color =
gender)) + stat_summary(funy = mean, geom = line’,
aes(group = gender)) + stat_summary(funy = mean, geom
= ‘point’, aes(group = gender), size = 3) +
stat_summary(fun.data = mean_cl_boot, geom =
‘errorbar’, width = 0.2) + ylim(0, 100)



Plotting

Box plots per group:

ggplot(goggles,aes(alcohol attractiveness))
+geom_boxplot()+facet_wrap(~gender)



Normality

Stat.desc():

stat.desc(goggles$attractiveness, desc=F, norm=1)

By gender (2 groups):

by(goggles$attractiveness, goggles$gender, stat.desc,
desc=F, norm=1)

By alcohol (3 groups):

by(goggles$attractiveness, goggles$alcohol, stat.desc,
desc=F, norm=1)



Normality

For each of the 6 groups:

by(goggles$attractiveness, list(goggles$alcohol,
goggles$gender), stat.desc, desc=F norm=1)

Verdict:

Owverall some skewness, and failed normal test

—ailed normal test for females

No problems in all 6 groups



Homoscedasticity

By gender (2 groups):

levene lest(attractiveness~gender, data=goggles)

By alcohol (3 groups):

levene lest(attractiveness~alcohol, data=goggles)

For each of the 6 groups:

levene lest(attractiveness~alcohol”gender, data=goggles)

Verdict:

eteroscedasticity by gender, but not for the interaction




Contrasts

Alcohol has 3 levels, so we should define 2 contrasts:

contrasts(goggles$alcohol)<-cbind(c(-2/3,1/3,1/3),

c(0,-1/2,1/2)

(Gender has 2 levels, so only one contrast is needed:

contrasts(goggles$gender)<-c(-1/2,1/2)

(Why bother with contrasts here? — Well get to that in
minute!)



Run the ANOVA

To run with both main effects of A and B, and the interaction
effect AB, you can simply specity A*B

R automatically includes the main eftects

Run the model:
gl <- aov(attractiveness ~ alcohol"gender, data = goggles)

Anova(gl, type=3)

Sum Sq Df F value Pr(>F)
(Intercept) 163333 1 1967.0251 < 2.2e-16 skkx
gender 169 1 2.0323 0.1614
alcohol 3332 2 20.0654 7.649e-07 *xxx
gender:alcohol 1978 2 11.9113 7.987e-05 s*x
Residuals 3487 42



Run the ANOVA

(et the plots to test for homoscedasticity and normality:

plot(gl)



Why type=3?

You can run a factorial ANOVA in three ways, with three
types of Sum of Squares:



Type |

In Type | Sum of Squares variables are added to the model
one by one (this is what AOV does)

Let's say you test Y~A*B

he first F-test is the effect of A alone

he second F-test is the effect of B, given A
The third F-test is the effect of AB, given A and B

The order in which you list your variables makes a diftterencel

tyou specity Y ~ B*A, you get different results!



Type |l

In Type Il Sum of Squares, main effects are added first,
interaction(s) later (this is what Anova does by detault)

Let's say you test Y~A*B

he first F-test is the effect of A, given B

he second F-test is the effect of B, given A
The third F-test is the effect of AB, given A and B

The main effects are meaningless when there is an
interaction effect (but accurate if not)



Type Il

In Type lll Sum of Squares everything is added to the model
at the same time

Let's say you test Y~A*B

ne first F-test is the effect of A, given B and AB

he second F-test is the effect of B, given A and AB
The third F-test is the effect of AB, given A and B

The main eftects are meaningtful, but not very usetul

Because the effect of B now depends on A and vice versa



Type |, Il or I1I?

Tips:
— Don't use type |

— Use type Il if you expect no interaction effects at all
(slightly more powerful) or it you want to use non-
orthogonal contrasts

— lype |l doesn't work when group sizes are very unequal

— Use type lll it you do expect an interaction effect, or when
group sizes are unequal

— For type lll to make sense, contrasts must be orthogonal



Interpretation

Sum Sq Df F value Pr(>F)
(Intercept) 163333 1 1967.0251 < 2.2e-16 *kx*
gender 169 1 2.0323 0.1614
alcohol 3332 2 20.0654 7.649e-07 *xx
gender:alcohol 1978 2 11.9113 7.987e-05 xxx
Residuals 3487 42

There is no significant main eftect of gender (plot it!)
There is a significant main effect of alcohol (plot it!)

There is a significant interaction effect (see our first plot!)

he effect of alcohol ditters per gender, and vice versa

ne other two effects are therefore uninterpretable



Interpret contrasts

Run summary.lm(g1):

Estimate Std. Error t value Pr(>]|t]|)

(Intercept) 58.333 1.315 44.351 < 2e-16 sk«
genderl -3.750 2.631 -1.426 0.161382
alcoholl -8.125 2.790 -2.912 0.005727 xx
alcohol? -18.125 3.222 -5.626 1.37e-06 *xx
genderl:alcoholl -15.000 5.580 -2.688 0.010258 x
genderl:alcohol2 -26.250 6.443 -4.074 0.000201 *xxx

(Genderl: the contrast of gender

Since we coded the model orthogonal, this is the overall
difference between males and temales (which difters per

alcohol level, and is therefore not very interesting)



Interpret contrasts

Estimate Std. Error t value Pr(>|t])

(Intercept) 58.333 1.315 44.351 < 2e-16 skkk
genderl -3.750 2.631 -1.426 0.161382
alcoholl -8.125 2.790 -2.912 0.005727 *xx
alcohol2 -18.125 3.222 -5.620 1.37e-06 *xx
genderl:alcoholl -15.000 5.580 -2.688 0.010258 x
genderl:alcohol2 -26.250 6.443 -4.074 0.000201 *xx

alcohol1l: comparing no alcohol to the two alcohol groups

Again, there is an overall difference, but not interesting
because it differs for males and females

alcohol2: comparing 2 versus 4 pints of beer

Same thing



Interpret contrasts

Estimate Std. Error t value Pr(>]|t]|)

(Intercept) 58.333 1.315 44.351 < 2e-16 sk«
genderl -3.750 2.631 -1.426 0.161382
alcoholl -8.125 2.790 -2.912 0.005727 xx
alcohol2 -18.125 3.222 -5.6206 1.37e-06 *xx
genderl:alcoholl -15.000 5.580 -2.688 0.010258 x
genderl:alcohol2 -26.250 6.443 -4.074 0.000201 *xxx

genderl:alcoholl: tests whether the effect of no alcohol vs.
the two alcohol groups differs for males and tfemales

genderl:alcohol2: tests whether the effect of 2 vs. 4 pints
differs for males and females

The answer is yes for bothl



Interpret contrasts

Estimate Std. Error t value Pr(>]|t]|)

(Intercept) 58.333 1.315 44.351 < 2e-16 sk«
genderl -3.750 2.631 -1.426 0.161382
alcoholl -8.125 2.790 -2.912 0.005727 xx
alcohol? -18.125 3.222 -5.626 1.37e-06 *xx
genderl:alcoholl -15.000 5.580 -2.688 0.010258 x
genderl:alcohol2 -26.250 6.443 -4.074 0.000201 *xxx

Cffect for females, no alcohol: 58.333 + -1/2%-3.75 +
-2/37-8125 + -1/27-2/3"-15 = 60.625

Ctfect for females, 2 pints: 58.333 + -1/27-3.75 + 1/37-8125 +
1/27-18125 + -1/271/3%-15 + -1/27-1/27-26.25 = 62.5

Cffect for females, 4 pints: 58.333 + -1/27-375 + 1/3%-8125 +
1/27-18125 + -1/271/37-15 + -1/271/27-26.25 = 57.5



Interpret contrasts

Estimate Std. Error t value Pr(>]|t]|)

(Intercept) 58.333 1.315 44.351 < 2e-16 sk«
genderl -3.750 2.631 -1.426 0.161382
alcoholl -8.125 2.790 -2.912 0.005727 xx
alcohol? -18.125 3.222 -5.626 1.37e-06 *xx
genderl:alcoholl -15.000 5.580 -2.688 0.010258 x
genderl:alcohol2 -26.250 6.443 -4.074 0.000201 *xxx

Cffect for males, no alcohol: 58.333 + 1/2%-3.75 + -2/3%-8125
+1/27-2/37-15 = 66.875

Ctfect for males, 2 pints: 58.333 + 1/27-3.75 + 1/37-8125 +
1/27-18125 +1/271/37-15 + 1/27-1/27-26 .25 = 66.875

Cffect for males, 4 pints: 58.333 + 1/27-375 + 1/3%-8125 +
1/27°-18125 +1/271/37-15 +1/271/27-26.25 = 35.625



Interpret contrasts

100 -
75 -
N
7%, gender
=
@)
= 50- Female
O
© Male
©
25 -
O -

| |
None 2 Pints 4 Pints
alcohol



Simple effects

Test the effect of one variable for different levels of the other
variable

.0, a kind of t-test for gender at each level of alcohol

Or, a kind of ANOVA for alcohol separately for males and

females




Contrast 2

Contrast 4

2+4 pints (M+F)

2p (M+F) | 4p (M+F)

2p M

@ Simple effects

“

Op F

Contrast 5

Contrast 1

Contrast 3



Simple effects

First, create a variable with all groups:

goggles$simple <- interaction(goggles$alcohol,
goggles$gender)

Create dummies for the contrasts:
alcohol1 <- c(-2/31/31/3,-2/31/31/3)
alcohol2 <- ¢(0,-1/2,1/2,0,-1/2,1/2)
ender_none <- c(-1/2,0,0,1/2,0,0)
gender_2p <- c(0,-1/2,0,0,1/2,0)
gender_4p <- ¢(0,0,-1/2,0,0,1/2)

(@)




Simple effects

| oad the contrasts:

contasts(goggles$simple) <- cbind(alcoholl, alcohol2,
gender_none, gender_2p, gender_4p)

Run the ANOVA and get the Im summary:

simpleq <- aov(attractiveness ~ simple, data = goggles)

summary.lm(simpleg)



(Intercept)
simplealcoholl
simplealcohol?2

simplegender_none

Simple effects

simplegender_2p
simplegender_4p

Estimate Std. Error t value Pr(>]|t])
44,351 <

58.
-8.
-18.
6.
4.
—-21.

333
125
125
250
375
875

.315
. 790
222
.556
.556
.556

~ BB WNPRE

-2.912
-5.626
1.372
0.960

0.
1.37e-06 xxxk
0.
0.

2e—-16 kkxk
00573 *x

17742
34243

-4.801 2.02e—-05 skxkx

The first part we already knew from earlier. For the rest:

Sim
Sim
Sim

D

D

blec

€

€

S

@)

ender_none: the effect of gender with no alcohol

encC

encC

er_/

er_4

D: T

O: T

~

e el

e el

~

foct of

O

~

ect of ¢

enC

enC

Only the last simple effect is significant!

er wit

er wit

N2 pints

N 4 pints



Simple effects

100 -
75 -
0
7%, gender
c
()
'E 50 - Female
O
© Male
©
25 -
O -

| |
None 2 Pints 4 Pints
alcohol



Post-hoc tests?

Same as for reqular ANOVA!

You can only do post-hoc tests on main effects!

It you want to do post-hoc tests on your simple effects (e.qg.
on alcohol for different genders):

Use non-orthogonal contrasts, and apply the appropriate
correction (see slides on Bonterroni, Holm, and Benjamini-
Hochberg corrections)



Robust methods

Use the VRS2 packagel

Two-way ANOVA on 10% trimmed means:
t2way(attractiveness~alcohol"gender, data=goggles, tr=0.1)

Two way ANOVA with M-measures and a bootstrap:

pbad2way(attractiveness~alcohol " gender, data=goggles,
est="median’, nboot = 2000)

use est=_mom’ to use an automatically trimmed mean
rather than the median



Robust rest

Robust contrasts? See reqular ANOVA!

You can run robust t-tests on the contrast dummies

Robust post-hoc tests? Same as for reqular ANOVA!

You can only do post-hoc tests on main effects!

|F you want to do robust post-hoc tests on your simple
eftects (e.g. on alcohol tor different genders):

Use non-orthogonal contrasts, and apply the appropriate
correction, run robust t-tests on the contrast dummies



Effect sizes

Overall R2: from summary.lm

Omega-squared per effect: use my “‘omega_aov_ function
on the next slide



Effect sizes

omega_aov <— function(model)<
MS<—summary(model) [[1]]$'Mean Sq'; #get the mean squares
df<—summary(model) [[1]]$Df; #get the Dfs
MSr<-MS[length(MS)]1; #get MSr (the last one)
N<-sum(df)+1; #get N (sum of df+1)
MS<-MS[-c(length(MS))]; #remove MSr from MS
df<-df[-c(length(df))]; #remove dfr from df
var<—-df*x(MS-MSr)/N; #get the variances
varTotal<-sum(var)+MSr; #get the total variance
omega.squared<-var/varTotal; #get the omega-squareds
omega<-sqrt(omega.squared); #get the omegas
labels<-attr(model$terms,"term. labels"); #get labels
return(cbind(labels,omega,omega.squared))



Effect sizes

Cohen’s d of specific comparisons (e.g. the simple effects):

same as ANOVA

(Get means, sds, and ns from stat.desc:

desc <- by(goggles$attractiveness, list(goggles$gender,
goggles$alcohol), stat.desc)

-/

Plug values into mes, e.g..

mes(desc|| Male”, "None™|]| mean’], desc|| Female’,
‘None' ||| 'mean’|, desc|| Male”, "None'| || "std.dev’],
desc||"Female’, 'None]|| std.dev’], 8, 8)



Reporting

See Field section 12.9

Since effects may be complicated, always report a graph



“It is the mark of a truly intelligent person
to be moved by statistics.”

George Bernard Shaw




