
Dealing with data
Measurement & Evaluation of HCC Systems



Intro

Today’s goal: 
Teach you how to deal with data (fundamentals of stats) 

Outline: 

- Measuring data 

- Uses of data 

- Exploring data



Measuring data
What types of data are there, and how can we collect them?



Collecting data

Correlational (e.g. survey, observation) 
Measure both cause and effect 
High ecological validity 

Experimental 
Manipulate cause, measure effect 
Able to establish causality



Measuring data

Levels of measurement 

Categorical 
Nominal - you can do counts 
Ordinal (subjective) - no diffs, < > 

Continuous 
Interval - distances equal, adding, averaging 
Ratio - 2 is twice as much as 1, multiply



Validity and error

Validity: does it measure what you intend to measure? 
Is “purchase behavior” a valid measure of satisfaction? 

Error (opposite of reliability) 
What has more measurement error: direct observation 
(e.g. height), indirect observation (e.g. pH test strip), self-
report (e.g. number of vacations in past 3 years)? 



Validity in context

Note: validity is always assessed in context! It depends on:  

- the specific population to be measured 

- the purpose of the measure



Types of validity

Content validity (face validity) 

Criterion validity 

- Predictive validity 

- Concurrent validity 

Construct validity 

- Discriminant validity 

- Convergent validity



Content validity
Content validity is assessed by specialists in the concept to 
be measured 

Do the items cover the breath of the content area? (not 
too wide, not too narrow?) 
Are they in an appropriate format? 

Bad: 

- A attitude scale that also has behavioral items 

- A usability scale that only asks about learnability 

- A relative measure of risk, trying to measure absolute risk



Criterion validity
Predictive validity 

Test how well a measure predicts a future outcome (e.g. 
behavioral intention —> future behavior) 

Concurrent validity 
Compare the measure with some other measure that is 
known to correlate with the concept (e.g. correlate a new 
scale for altruism with an existing scale for compassion) 
Or, compare the measure between groups that are known 
to differ on the concept (e.g. compare altruism of nuns 
and homicidal maniacs)



Construct validity
Discriminant validity 

Are two scales really measuring different things? (e.g. 
attitude and satisfaction may be too highly correlated) 

Convergent validity 
Is the scale really measuring a single thing? (e.g. a usability 
scale may actually consist of several sub-scales: learnability, 
effectiveness, efficiency, satisfaction, etc.) 

Factor analysis helps you with construct validity 
Other types you have to confirm yourself!



Uses of data
A brief intro to how data is used in statistical models



Uses of data

Describe the data 

Model the data



Describing data
Frequency distribution 

Plot a graph of how many times each score occurs 

Distributions: 

- Normal 

- Positive skew 

- Negative skew 

- Leptokurtic (+ kurtosis) 

- Platykurtic (- kurtosis)

implying that as scores start to deviate from the centre their frequency is decreasing. As we
move still further away from the centre our scores become very infrequent (the bars are very
short). Many naturally occurring things have this shape of distribution. For example, most men
in the UK are about 175 cm tall,13 some are a bit taller or shorter but most cluster around this
value. There will be very few men who are really tall (i.e., above 205 cm) or really short (i.e.,
under 145 cm). An example of a normal distribution is shown in Figure 1.3.

FIGURE 1.3 A ‘normal’ distribution (the curve shows the idealized shape)

There are two main ways in which a distribution can deviate from normal: (1) lack of
symmetry (called skew) and (2) pointyness (called kurtosis). Skewed distributions are not
symmetrical and instead the most frequent scores (the tall bars on the graph) are clustered at
one end of the scale. So, the typical pattern is a cluster of frequent scores at one end of the
scale and the frequency of scores tailing off towards the other end of the scale. A skewed
distribution can be either positively skewed (the frequent scores are clustered at the lower end
and the tail points towards the higher or more positive scores) or negatively skewed (the
frequent scores are clustered at the higher end and the tail points towards the lower or more
negative scores). Figure 1.4 shows examples of these distributions.

FIGURE 1.4 A positively (left-hand figure) and negatively (right-hand figure) skewed distribution

Distributions also vary in their kurtosis. Kurtosis, despite sounding like some kind of exotic
disease, refers to the degree to which scores cluster at the ends of the distribution (known as the
tails) and how pointy a distribution is (but there are other factors that can affect how pointy the
distribution looks – see Jane Superbrain Box 2.3). A distribution with positive kurtosis has
many scores in the tails (a so-called heavy-tailed distribution) and is pointy. This is known as a
leptokurtic distribution. In contrast, a distribution with negative kurtosis is is relatively thin in
the tails (has light tails) and tends to be flatter than normal. This distribution is called
platykurtic. Ideally, we want our data to be normally distributed (i.e., not too skewed, and not
too many or too few scores at the extremes!). For everything there is to know about kurtosis
read DeCarlo (1997).

In a normal distribution the values of skew and kurtosis are 0 (i.e., the tails of the
distribution are as they should be). If a distribution has values of skew or kurtosis above or
below 0 then this indicates a deviation from normal: Figure 1.5 shows distributions with
kurtosis values of +4 (left panel) and −1 (right panel).

FIGURE 1.4 A positively (left-hand figure) and negatively (right-hand figure) skewed distribution

Distributions also vary in their kurtosis. Kurtosis, despite sounding like some kind of exotic
disease, refers to the degree to which scores cluster at the ends of the distribution (known as the
tails) and how pointy a distribution is (but there are other factors that can affect how pointy the
distribution looks – see Jane Superbrain Box 2.3). A distribution with positive kurtosis has
many scores in the tails (a so-called heavy-tailed distribution) and is pointy. This is known as a
leptokurtic distribution. In contrast, a distribution with negative kurtosis is is relatively thin in
the tails (has light tails) and tends to be flatter than normal. This distribution is called
platykurtic. Ideally, we want our data to be normally distributed (i.e., not too skewed, and not
too many or too few scores at the extremes!). For everything there is to know about kurtosis
read DeCarlo (1997).

In a normal distribution the values of skew and kurtosis are 0 (i.e., the tails of the
distribution are as they should be). If a distribution has values of skew or kurtosis above or
below 0 then this indicates a deviation from normal: Figure 1.5 shows distributions with
kurtosis values of +4 (left panel) and −1 (right panel).



Why normal?

Statisticians like normal distributions 
Because they have been studied extensively 

We know the probability of a certain event occurring 
e.g. what is the probability that a man is 7ft tall (or taller)? 

Using the mean and standard deviation, we can turn this 
question into a Z score: 

z = (82 - 70) / 4 = 3, which has a probability of .0013 (0.13%)



Describing data
Center of the distribution 

- Mode (most common) 

- Median (middle value) 

- Mean (average) 

Dispersion 

- Range 

- Interquartile range (IQR) 

- Variance and standard deviation

FIGURE 1.5 Distributions with positive kurtosis (leptokurtic, left) and negative kurtosis (platykurtic, right)

1.7.2.  The centre of a distribution 
We can also calculate where the centre of a frequency distribution lies (known as the central
tendency). There are three measures commonly used: the mean, the mode and the median.

1.7.2.1. The mode 

The mode is simply the score that occurs most frequently in the data set. This is easy to spot in
a frequency distribution because it will be the tallest bar! To calculate the mode, simply place
the data in ascending order (to make life easier), count how many times each score occurs, and
the score that occurs the most is the mode! One problem with the mode is that it can often take
on several values. For example, Figure 1.6 shows an example of a distribution with two modes
(there are two bars that are the highest), which is said to be bimodal. It’s also possible to find
data sets with more than two modes (multimodal). Also, if the frequencies of certain scores are
very similar, then the mode can be influenced by only a small number of cases.

FIGURE 1.6 A bimodal distribution

1.7.2.2. The median 

Another way to quantify the centre of a distribution is to look for the middle score when scores
are ranked in order of magnitude. This is called the median. For example, Facebook is a
popular social networking website, in which users can sign up to be ‘friends’ of other users.



Modeling data
A model is a way to explain 
or summarize the data 

The mean is a model 

The quality of the model 
depends on how well it fits 
the data 

We can measure the 
deviance between the 
model and the data
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Modeling data
errori = xi – mean 

SS = ∑errori2 

SS = sum of squared 
errors 

s2 = SS/(N-1) 
s2 = variance 
s = standard deviation 
N-1 = degrees of freedom
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Why N-1?
Let’s say you have 4 data points: 

1, 3, 4, 8 
Mean: 4 

If you know the mean, how many data points are “free”? 

Answer: Only three! 
Once you know the first three, you will know the fourth 
one as well, because the mean needs to be 4! 
(1+3+4+x)/4 = 4 —> x has to be 8!



Modeling data
Remember: 

errori = xi – mean 

SS = ∑errori2 

More generally: 
model: outcomei = model + errori 

deviation = ∑(observationi – model)2



Effect of deviation
High deviation = more spread 

Not the same as kurtosis!



Beyond the sample

(Standard) deviation tells us how well the mean represents 
the sample 

But how well does the sample mean represent the 
population mean? 

Answer: standard error!



Beyond the sample
What is the standard error? 

Standard deviation = variability of a sample 
e.g. variability of age or height of people in this class 

Standard error = variability of the mean of a sample 
e.g. if I taught this class several times, how much would the 
average age and the average height differ between 
classes? 

Standard error = standard deviation / √(sample size)



Beyond the sample

The sample mean may deviate a bit from the population 
mean 

Can we say something about the population mean? 

Answer: we can create a confidence interval: 
E.g. 95% CI: on repetition, we’d expect the true mean to be 
within the CI 95% of the time



Beyond the sample
Calculating the CI, using the z-score: 

z = (x - mean)/s 
95% of the means fall within z = -1.96 and z = +1.96 
upper x: mean + 1.96*SE 
lower x: mean – 1.96*SE 

General rule: to construct a x*100% confidence interval, use: 
z-score of p = (1-x)/2 (you can look this up in a table) 
for small samples: use tn-1 of p = (1-x)/2



Hypotheses

Research question: 
Is my new system (version B) better than version A? 
Experimental hypothesis: H1: Mb > Ma 

Calculate the means. Do they differ a lot? 
Given no effect, we expect the means to be roughly equal 
H0: Mb = Ma 

To test H1, we try to reject H0



Hypotheses

To test H1, we try to reject H0 

How? By comparing the difference in means to the standard 
error 

If  the SE is small, we expect small differences under H0 
If it is large, large differences are more likely



Hypotheses
If the difference is larger than expected based on the SE:  

- We may still have found a difference by chance (no real 
effect), or… 

- There is a real difference in means (H0 is incorrect).  

The larger the difference, the more confident we are that H0 
is incorrect. Then, H1 is supported 

But never proven, because the first option may still apply! 
We calculate the chance; this is the p-value 
Generally, if p < 0.05, we reject H0



Hypotheses
If CIs overlap, SE is large 
compared to the difference 

Means are likely to come 
from the same population 

If they don’t overlap, they are 
likely to come from different 
populations 

Because with 95% CIs, 
this happens only 5% of 
the time!



Hypotheses
Generally speaking: 

Test statistic = the variance explained by the model / the 
variance not explained by the model 
For a good test statistic, we know the probability of finding 
a value at least this big 
The bigger the value, the smaller the chance 
If this p < 0.05, then we reject the null hypothesis that the 
test statistic = 0 
What if p > 0.05?



Hypotheses
Where does the 0.05 go? 

If H1: Mb > Ma —> one-tailed 

If H1: Mb ≠ Ma —> two-tailed



Getting it wrong

But what about the 5% of the times that we reject the null 
hypothesis, but we got it wrong? 

This is a Type I error 
5% is the alpha-level 

And what about the cases where there is a real effect but we 
didn't find it? 

This is a Type II error 
We want this error to be smaller than 20%… the beta-level



Getting it wrong

There is a real 
effect

There is no real 
effect

Found an effect 1–beta 
(true positive)

alpha 
(false positive)

Found no effect beta 
(false negative)

1–alpha 
(true negative)

Power



Power analysis
A calculation involving the following 4 parameters: 

- Alpha (cut-off p-value, often .05) 

- Power (probability of finding a true effect, often .80 or .85) 

- N (sample size, usually the thing we are trying to calculate) 

- Effect size (usually the expected effect size) 

If N is small, true effects may be non-significant (p > alpha)! 
If this happens for > 20% of effects of the expected size, 
then the test is under-powered! 
More on this in the next lecture!



Exploring data
Graphs! Graphs! Graphs!



Exploring data

We will do this part in R



Exploring data
Plotting with ggplot2 

ggplot: a plot object 
myGraph <- ggplot(myData); creates a plot 

geom: a layer on the plot 
myGraph + geom_histogram(); adds a histogram layer 

aes: aesthetics of the graph or a layer 
myGraph <- ggplot(myData, aes(xvar, yvar, color = cvar)); 
specifies the variables for the x-axis, y-axis, and color



Exploring data
Other things: 

theme() note: Field uses the deprecated function “opts()” 
adds options, such as a title 

labels(x = “Text”, y = “Text”)  
adds x and y labels 

stats:  
things that make the geoms magically do what you want 
(e.g. generates counts when you run geom_histogram)



Exploring data

position 
command used to avoid overlap 

facet_grid(x ~ y) and facet_wrap(~ y, nrow, ncol) 
split your plot into smaller plots



Examples

Scatterplot 

Histogram 

Density plot 

Boxplot 

Bar charts 

Line graphs



Scatterplot
Dataset:  

Effect of exam stress on exam performance 

Variables: 
Code: participant id 
Revise: hours spent revising 
Exam: performance (%) 
Anxiety: anxiety level (questionnaire score) 
Gender: male/female



Scatterplot
Download the datasets from the course website 

Read the data (easy in RStudio) 
Click on “import dataset” in the top-right panel 
Find the file “Exam Anxiety.dat”, click open 
Change the Name to examData, make sure Heading is set 
to Yes, click Import 

Enable ggplot2 using the checkbox under “packages”  
(tab on bottom-right panel)



Scatterplot

Make a plot object; x = Anxiety, y = Exam: 
scatter <- ggplot(examData, aes(Anxiety, Exam)) 

Create a dot plot: 
scatter + geom_point() 

Add labels: 
scatter + geom_point() + labs(x = “Exam Anxiety, y = 
“Exam Performance %)



Scatterplot

Add smoother: 
scatter + geom_point() + geom_smooth() + labs(x = 
“Exam Anxiety, y = “Exam Performance %) 

Make the smoother a red straight line, without CI: 
scatter + geom_point() + geom_smooth(method=“lm”, 
color=“red”, se = F) + labs(x = “Exam Anxiety”, y = “Exam 
Performance %”)



Scatterplot

Grouped scatterplot: 
groupscatter <- ggplot(examData, aes(Anxiety, Exam, 
color = Gender) 
groupscatter + geom_point() + geom_smooth(method = 
“lm”, aes(fill = Gender), alpha = 0.1) + labs(x = “Exam 
Anxiety”, y = “Exam Performance %”, color = “Gender”)



Histogram

Read the data 
File: DownloadFestival.dat, set Name to festivalData 
Dataset: festival-goer hygiene (repeated measures) 

Variables: 
ticknumb: participant id 
gender: male/female 
day1, day2, day3: hygiene level at days 1-3 (0-4 scale)



Histogram

Make a plot object with day1 data: 
histo <- ggplot(festivalData, aes(day1)) 

Create a histogram: 
histo + geom_histogram(binwidth = 0.4) + labs(x = 
“Hygiene at day 1”, y = “Frequency”)



Density plot

Fix the outlier 
festivalData[festivalData$day1 == 20.02,]$day1 <- 2.02 

Make a plot object with day1 data: 
density <- ggplot(festivalData, aes(day1)) 

Create a density plot: 
density + geom_density() + labs(x = “Hygiene at day 1”,  
y = “Density Estimate”)



Boxplot

Make a plot object, x = gender, y = day1: 
box <- ggplot(festivalData, aes(gender,day1)) 

Create a boxplot: 
box + geom_boxplot()+ labs(x = “Gender”, y = “Hygiene at 
day 1”)



Boxplot Data that is more than 1.5*IQR 
away from the median



Bar chart

Read the data 
File: ChickFlick.dat, set Name to chickFlick 
Dataset: enjoyment of movies by gender 

Variables: 
gender: male/female 
film: the movie (Bridget Jones’ Diary, Memento) 
arousal: physiological arousal score (indicator of 
enjoyment)



Bar chart
Make a plot object with x = film and y = arousal: 

bar <- ggplot(chickFlick, aes(film, arousal)) 

Create a histogram: 
bar + stat_summary(fun.y = mean, geom = “bar”, fill = 
“white”, color = “black”) 

Add error bars of a 95% confidence interval 
bar + stat_summary(fun.y = mean, geom = “bar”, fill = 
“white”, color = “black) + stat_summary(fun.data = 
mean_cl_normal, geom = “pointrange”)



Bar chart by gender
Make a plot object x = film, y = arousal, fill = gender: 

genbar <- ggplot(chickFlick, aes(film, arousal, fill=gender)) 

Create a bar plot, genders side-by-side: 
genbar + stat_summary(fun.y = mean, geom = “bar”, 
position=“dodge”) 

Add error bars of a 95% confidence interval 
genbar + stat_summary(fun.y = mean, geom = “bar”, 
position=“dodge”) + stat_summary(fun.data = 
mean_cl_normal, geom = “errorbar”, position = 
position_dodge(width=0.90), width = 0.2)



Bar chart by gender
Same thing, but now we are going to make separate plots for 
gender: 

genbar2 <- ggplot(chickFlick, aes(film, arousal, fill=film)) 

Create a bar plot, genders in different “facets” (note: no 
dodge needed, remove the legend) 

genbar2 + stat_summary(fun.y = mean, geom = “bar”) + 
stat_summary(fun.data = mean_cl_normal, geom = 
“errorbar”, width = 0.2) + facet_wrap(~gender) + 
theme(legend.position = “none”)



Line graph
Read the data 

File: Hiccups.data, set Name to hiccupsData 
Dataset: cures for hiccups (repeated measures) 

Variables: 
Baseline: hiccups at baseline 
Tongue: hiccups after tongue pulling 
Carotid: hiccups after carotid artery massage 
Rectum: you don’t want to know



Line graph
Reshape the data 

We want to go from: 	 	 	 	 	 to:

Baseline Tongue Carotid Rectum

15 9 7 2

13 18 7 4

9 17 5 4

7 15 10 5

Hiccups Intervention

15 Baseline

13 Baseline

9 Baseline

7 Baseline



Line graph

Reshape the data 
hiccups <- stack(hiccupsData) 

Give the correct column names 
names(hiccups) <- c(“Hiccups”,”Intervention”) 

Turn “Intervention” into a factor 
hiccups$Intervention <- factor(hiccups$Intervention, 
levels=c(“Baseline”,”Tongue”,”Carotid”,”Rectum”))



Line graph
Make a plot object: 

line <- ggplot(hiccups,aes(Intervention,Hiccups)) 

Create dots, a blue dotted line connecting them, and some 
error bars 

line + stat_summary(fun.y = mean, geom = “point”) 
+ stat_summary(fun.y = mean, geom = “line”, aes(group=1), 
color = “blue”, linetype = “dashed”) 
+ stat_summary(fun.data = mean_cl_boot, geom = 
“errorbar”, width = 0.2)



Double line graph

Read the data 
File: TextMessages.dat, set Name to textData 
Dataset: effects of text messaging on grammar (repeated 
measures) 

Variables: 
Group: text message or control group 
Baseline: grammar scores before the experiment 
Six_months: grammar scores after the experiment



Double line graph
Install “reshape2” package (in the “packages” panel) 

Reshape the data with “melt” 
text <- melt(textData, id=c(“Group”), 
measured=c(“Baseline”,Six_months”)) 

Give the correct column names 
names(text) <- c(“Group”,”Time”,”Score”) 

Turn “Time” into a factor 
text$Time <- factor(text$Time, levels=c(“Baseline”,”
Six_months”))



Double line graph
Exercise: create the following plot  

(hint: reshape the y-axis with the ggplot aesthetic “ymin” 
and “ymax”)
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“It is the mark of a truly intelligent person  
to be moved by statistics.” 

George Bernard Shaw 
 


