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Abstract Proper evaluation of the user experience of recommender systems requires
conducting user experiments. This chapter is a guideline for students and researchers
aspiring to conduct user experiments with their recommender systems. It first cov-
ers the theory of user-centric evaluation of recommender systems, and gives an
overview of recommender system aspects to evaluate. It then provides a detailed
practical description of how to conduct user experiments, covering the following
topics: formulating hypotheses, sampling participants, creating experimental ma-
nipulations, measuring subjective constructs with questionnaires, and statistically
evaluating the results.

1 Introduction

Traditionally, the field of recommender systems has evaluated the fruits of its labor
using metrics of algorithmic accuracy and precision (see Chapter ?? for an overview
of recommender systems evaluation practices). Netflix organized a million-dollar
contest for just this goal of improving the accuracy of its movie recommendation
algorithm [7]. In recent years, however, researchers have come to realize that the
goal of a recommender system extends well beyond accurate predictions; its primary
real-world purpose is to provide personalized help in discovering relevant content
or items [72].

This has caused two important changes in the field. The first change was incited
by McNee et al. [83] who argued that “being accurate is not enough” and that one
should instead “study recommenders from a user-centric perspective to make them
not only accurate and helpful, but also a pleasure to use” (p. 1101). McNee et al.
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suggest broadening the scope of research regarding the outcomes of the evaluation
beyond accuracy measures. This suggestion has spawned a research area that eval-
uates recommender systems in online user experiments with user-centric evaluation
metrics that span behaviors (e.g. user retention and consumption) as well as attitudes
(e.g. usability, choice satisfaction, and perceived usefulness; cf. [67, 95]).

The second change is a broadening of the scope of research regarding the system
aspects to investigate beyond just the algorithm of the recommender. In essence, rec-
ommender systems apply algorithms on user input with the goal of providing some
kind of personalized output. This means that aside from the algorithm, there are
two important interactive components to any recommender: the mechanism through
which users provide their input, and the means by which they receive the system’s
output. Realizing the importance of these interactive components, McNee et al. [84]
suggested that researchers should put more focus on the “Human-Recommender In-
teraction” and investigate these interactive components. Moreover, in his RecSys
2009 keynote Martin emphasized the importance of this endeavor: he argued that
the interactive components of a recommender account for about 50% of its com-
mercial success, while he provocatively estimated that the algorithm accounts for
only 5% [81]. Indeed, research has shown that the preference elicitation mechanism
and the presentation of recommendations have a substantial impact on users’ ac-
ceptance and evaluation of recommender systems as well as their usage behavior
(cf. [19, 67, 96]).

These two changes have gradually evolved the field to take broader perspective
on the user experience of recommender systems [72]. However, the majority of cur-
rent research on recommender systems is still primarily focused on creating better
algorithms, and conducts offline machine learning evaluations instead of “live” user
experiments. The contribution of that research is thus limited to claims about algo-
rithmic accuracy and precision; without performing any user-centric evaluations it
is difficult to extend these claims to the more user-centric objective of recommender
systems: giving users a pleasant and useful personalized experience.

Proper evaluation of the user experience of a recommender system requires con-
ducting a user experiment,1 either in the form of a lab experiment or a randomized
field trial (which includes—but also extends beyond—conventional A/B tests). This
chapter of the Recommender System Handbook is meant as a guideline for students
and researchers aspiring to conduct user experiments with their recommender sys-
tems, as well as for editors and reviewers of conferences and journals to evaluate
manuscripts. To this end, this chapter will provide both theoretical and practical
guidelines. The theoretical part starts with the description of the Knijnenburg et
al. [67] User-Centric Evaluation Framework for Recommender Systems. We sub-
sequently use this framework to highlight aspects of recommenders and their users
that could be the object of study. We outline what has already been tested, and where
gaps in the literature exist. In the practical part, we provide guidelines regarding all

1 We use the term “user experiment” to denote the use of experimental conditions and formal mea-
surement as a means of testing theories about users interacting with recommender systems. This
as opposed to “user studies”, which are typically smaller observational studies used to iteratively
improve the usability of a recommender system.
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the steps involved in setting up, conducting and analyzing user experiments. The
framework will be used there to motivate and illustrate our practical guidelines.

This chapter is meant as a practical primer; a succinct yet comprehensive in-
troduction to user experiments, motivated by numerous examples of published rec-
ommender systems studies. The reader who is serious about conducting user ex-
periments is encouraged to continue their learning process beyond this chapter. To
this effect we have listed a number of excellent textbooks in the conclusion of this
chapter.

2 Theoretical Foundation and Existing Work

An essential part of conducting a good experiment is to have a good research model
(or descriptive theory, cf. [53]) of how the aspects under evaluation interact (see
Sect. 3.1). Such models are usually based on a synthesis of formal theories and
existing research, identifying the unknown parameters, and formulating testable hy-
potheses regarding these parameters. To add some structure to the process of the-
ory development, it is helpful to conceptualize the interaction between users and
recommenders within a theoretical framework. Several of such frameworks exist
(cf. [84, 95]), but we choose to structure this chapter around the Knijnenburg et
al. [67] User-Centric Evaluation Framework for Recommender Systems.

2.1 Theoretical Foundation: The Knijnenburg et al. Evaluation
Framework

The Knijnenburg et al. [67] framework consists of two levels (see Fig. 1). The top
level is a middle range “EP type” theory2 of how users experience an interactive
information system. A middle range theory is a theory about human behavior that
is applicable in a specific but reasonably generic situation (in this case: in using an
interactive information system). An “EP type” theory is a theory that can be used to
explain (E) the described behavior and to predict (P) how users would behave under
specific circumstances. The theory that comprises the top level of the Knijnenburg
et al. framework combines 3 existing theories of attitudes and behaviors [2, 3, 4, 37],
technology acceptance [26, 116], and user experience [46, 47]. Specifically, it de-
scribes how users’ subjective interpretation (Subjective System Aspects, or SSA)
of a system’s critical features (Objective System Aspects) influences their experi-

2 See [45] for a taxonomy of different types of theory.
3 Like Hassenzahl [46, 47], our framework describes the formation of experiences during tech-
nology use rather than the longer-term phenomenon of technology acceptance, but it extends this
model to behavioral consequences using attitude-behavior theories [2, 3, 4, 37] (a theoretical struc-
ture that is prominent in technology acceptance models [26, 116]).
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ence of (EXP) and interaction with (INT) a system. Note that the top level of the
framework can potentially be applied beyond the field of recommender systems.

The lower level of the Knijnenburg et al. framework is a classification of rec-
ommender system related constructs under these higher level concepts (inspired by
related analysis-type frameworks of recommender system aspects [84, 95, 122]).
These constructs can be used to turn the top-level theory into models for specific
recommender system evaluation studies. The combination of a top level theory and a
lower level taxonomy makes our framework more actionable than [84] (because the
EP type theory provides concrete suggestions for specific research hypotheses) and
more generic than [95] (because the EP type theory is generative, which makes our
framework more easily adaptable to new areas of recommender system research).
The Knijnenburg et al. framework has been put to practice in several published and
unpublished studies, so we will be able to illustrate many of our practical guidelines
with examples from existing applications of this framework.

An updated version4 of the Knijnenburg et al. [67] evaluation framework is dis-
played in Fig. 1. It represents the user-centric evaluation of recommender systems
as six interrelated conceptual components:

Objective System Aspects (OSAs) As recommender systems are typically multi-
faceted systems, their evaluation should be simplified by considering only a sub-
set of all system aspects in each experiment. The Objective System Aspects
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Fig. 1 An updated version of the User-Centric Evaluation Framework [67].

4 The paths from Personal and Situation Characteristics to Subjective System Aspects were added
to the original framework (as presented in [67]) based on insights from various experiments with
the framework.
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(OSAs) are the aspects of the system that are currently being evaluated. The algo-
rithm can be considered as an OSA, but also the input (interaction) mechanisms
(e.g. the rating scale used to provide feedback on recommendations) or output
(presentation) mechanisms (e.g. the number of presented recommendations, or
their layout).

Subjective System Aspects (SSAs) Although we are ultimately interested in the
effects of OSAs on User Experience (EXP) and Interaction (INT), we need to
consider Subjective System Aspects (SSAs) as mediating variables of these ef-
fects. SSAs are users’ perceptions of the OSAs. SSAs are measured with ques-
tionnaires that participants are asked to complete after (or sometimes during)
their interaction with the system (see Sect. 3.4). The measurement of SSAs is
necessary because incremental advances in recommender system aspects (e.g.
algorithms) are often small, and may go unnoticed. SSAs help establish whether
users perceive a certain system aspect, independently of their evaluation of the
aspect. For example, if an improved system does not lead to the expected increase
in user satisfaction, the SSA “perceived recommendation quality” can be used to
find out if users simply did not notice the improvement, or if they noticed it but
did not really like it. SSAs mediate the effects of OSAs on EXP, thereby explain-
ing how and why OSAs influence EXP, as well as increasing the robustness of
this causal link.

User Experience (EXP) The User Experience factors (EXPs) are users’ self-
relevant evaluations of the qualities of the recommender system. User experience
is also measured with questionnaires. Note that experience can relate to differ-
ent aspects of system usage, namely the evaluation of the recommender system
itself (e.g. perceived system effectiveness; system-EXP), the evaluation of the
process of using the system (e.g. expressing preferences, and browsing or choos-
ing recommended items; process-EXP), or the evaluation of the chosen items
(e.g. choice satisfaction; outcome-EXP). It is important to make these distinc-
tions, because different OSAs may influence different aspects of the experience.

Interaction (INT) The “final step” in the evaluation of a recommender system
is the users’ interaction with the system (INT). The interaction can be measured
objectively by logging the users’ clicks. Examples are: the number of recom-
mendations inspected by the user, their rating feedback, and the time they spent
using the recommender. Behavior grounds the subjective part of the evaluation
in observable behavior. At the same time, the subjective components provide ex-
planations for the (sometimes counterintuitive) observed behaviors.

Personal and Situational Characteristics (PCs and SCs) Although the main ob-
jective of most user experiments is to test the effects of OSAs on SSAs, EXPs and
INTs, these outcomes can also be influenced by Personal Characteristics (e.g. do-
main knowledge; PCs) and Situational Characteristics (e.g. choice goals; SCs).
PCs and SCs are typically measured by questionnaires5, and since they are be-

5 In some cases PCs and SCs can be inferred from user behavior, e.g. observing the click-stream
can tell us the market segment a user belongs to [44]. SCs can also be manipulated, e.g. by priming
users to approach the recommender with either a concrete or abstract mindset [71, 120]



6 Bart P. Knijnenburg, Martijn C. Willemsen

yond the influence of the system they can be measured before users interact with
the system.

The evaluation framework can be used as a conceptual guideline for developing
hypotheses. It can answer questions like:

Which EXP aspects is this OSA likely to influence? For example, an improved
algorithm may influence users’ evaluation of the recommendations (outcome-
EXP), while a new preference elicitation method is likely to influence the per-
ceived effectiveness of the recommendation process (process-EXP). Both may
impact users’ satisfaction with the system itself (system-EXP).

Which SSAs can be used to explain these effects? For example, certain algo-
rithms may produce more accurate recommendations, while other algorithms
may increase the diversity of the recommendations. Both may increase user sat-
isfaction, but for different reasons.

Which PCs and SCs may moderate these effects? For example, users’ liking
of accurate or diverse recommendations may depend on their choice goals (SC).
The most suitable preference elicitation method may depend on users’ domain
knowledge (PC).

Like most theories [2, 3, 4, 26, 37, 116], the theoretical top level of the Knij-
nenburg et al. [67] evaluation framework is generative: experimenters should see
the relationships between OSA, SSA, EXP, and INT as a blueprint for their own
descriptive models, but define their own set of measurable constructs and manipula-
tions that are tailored to their experiment. This way, the framework can help answer
questions that are specifically relevant to the system under evaluation.

2.2 Overview of Existing User-Centric Work and Promising
Directions

The main contribution of any recommender system user experiment is an empirical
evaluation of how selected OSAs influence the user experience, possibly moderated
by PCs and SCs. To aid the selection of interesting research topics, we provide a
brief overview of OSAs that have been studied in the past, and some promising
directions for future work. When writing a related works section for their own pa-
pers, researchers are advised to also consult other existing overviews of user-centric
research in recommender systems, such as the following:

• Xiao and Benbasat [122] provide a thorough overview and synthesis of 47 empir-
ical user-centric studies on what they call “recommendation agents”. Their syn-
thesis consists of a conceptual model that served as inspiration for the Knijnen-
burg et al. [67] framework. The authors recently updated their overview [123].

• Pu et al. [96] provide an overview of the state-of-the-art of user-centric recom-
mender systems studies. Their synthesis consists of a number of practical design
guidelines for recommender systems developers (see also Chapter ??).
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• Konstan and Riedl [72] put the rise of user-centric evaluation of recommender
systems into a historical context. They focus on user-centric implications of tech-
nical aspects of recommender systems.

Here we discuss the most commonly researched OSAs of recommender systems.
Envisioning a recommender system as a generic system that processes inputs to
produce outputs, the main OSA categories are the input (preference elicitation),
processing (algorithm) and output (recommendations and the presentation thereof).
Our overview is meant for researchers who wish to evaluate the user experience
of recommender systems. Researchers who wish to use recommender systems as a
vehicle for researching aspects of human decision making are referred to Chapter ??
for a comprehensive overview.

2.2.1 Preference elicitation methods

The four most common methods recommender systems use to elicit preferences
from users are rating scales, attribute weights, critiques, and implicit behavior. Rat-
ing scales are the most commonly employed method. They vary in granularity from
binary (thumbs up/down), via the most common star ratings (5 stars or 10 half stars),
to sliders (any number of steps). Research has shown that users behave differently
depending on the used rating scale [42]. Users seem to prefer the 5-star and 10-
half-star scales [15, 23, 28, 42, 106]. The more granular rating methods are more
effortful, but also provide more information [60]. Regardless of the rating scale,
user-ratings are often inaccurate [5, 100], and helping users with the rating task can
increase their accuracy [87].

Preference elicitation via attribute weights originates from the field of deci-
sion analysis, where multi-attribute utility theory is used as a standard for ratio-
nal decision-making [9]. Early work in this area shows that attribute-based rec-
ommenders result in better decisions and less effort compared to static browsing
tools [48]. This benefit is moderated by domain knowledge: only experts are more
satisfied with attribute-based recommenders and their outcomes; for novices, ex-
pressing preferences in terms of needs or examples tends to work better [65, 66, 98].

Another method to elicit preferences is example critiquing. In this method, users
iteratively provide detailed feedback on example recommendations. Substantial
user-centric work in this area (as summarized in [19]) shows that example critiquing
systems save cognitive effort and increase decision accuracy. Moreover, aiding users
by suggesting critiques seems to improve users’ decision confidence [16]. On the
other hand, Lee and Benbasat [77] show that a preference elicitation method that
highlights trade-offs may increase users’ trade-off difficulty.

A recommender system needs a certain number of ratings before it can produce
accurate recommendations, but not all users may have rated that many items yet; this
is the so-called “cold start problem”. Implicit behavioral feedback such as brows-
ing or purchase/consumption actions can be used to compute recommendations in
such cases. In [67] we compared the use of explicit and implicit feedback to cal-
culate recommendations. The results of this study showed that an implicit feed-
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back recommender can provide higher-quality recommendations that result in a
higher perceived system effectiveness and higher choice satisfaction. The results
also showed that users perceived the explicit feedback-based recommendations to
be more diverse, though, and diversity is another good quality of recommendation
lists (cf. [120, 121, 126], see also Chapter ??) The best solution is thus to create a
hybrid system that uses both explicit and implicit feedback. Koren et al. [73] show
that such hybrid recommenders are usually more accurate than their implicit and ex-
plicit counterparts (see also Chapter ??). In [65] we show that hybrid recommenders
are especially satisfying and effective for experts; for novices they seem to be too
complex.

Another way to overcome the cold start problem is to encourage users to rate
more items. Work on this topic shows that the best way to get users to rate more
items is to show them the benefit of rating by presenting good recommendations
early on in the interaction [33, 39, 68].

Future work could conduct a more comprehensive evaluation across the listed
preference elicitation paradigms, or explore how the most suitable preference elic-
itation method depends not just on users’ personal characteristics [65], but also on
situational characteristics such as users’ current mindset or choice goal.

2.2.2 Algorithms

As mentioned in the introduction, algorithms are often evaluated in an offline set-
ting. More accurate algorithms are often assumed to result in higher quality recom-
mendations and more effective systems, but this is not necessarily always the case.
For example, McNee et al. [82] found that users rated their most accurate algorithm
as least helpful, and Torres et al. [112] found that users were most satisfied with
their least accurate algorithm. Despite the prevalent opinion that recommender sys-
tems research should move beyond offline evaluations to user-centric studies [72],
surprisingly few research papers about new algorithmic solutions test the effect of
the proposed algorithm on users’ satisfaction (some exceptions are [25, 29, 99, 31]).
Given the results of McNee et al. [82] and Torres et al. [112], we strongly suggest
that algorithm developers test whether the accuracy improvements of their algo-
rithms translate to a higher user satisfaction.

2.2.3 Recommendations and Their Presentation

The composition and presentation of the list of recommendations has a strong ef-
fect on the user experience. Choosing among top recommendations is a difficult
task, and may lead to a phenomenon called “choice overload” [12]. Overcoming
choice overload is one of the main challenges of research on the presentation of rec-
ommendation. Longer lists of recommendations may attract more attention [109],
but are generally harder to choose from [6, 12]. Diversifying recommendations
seems to be a good antidote against choice overload, because diversified lists are
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attractive even when short [120, 121, 126]. In fact, non-personalized diversified
lists can be as attractive as personalized recommendations [67]. A steady stream
of research has considered algorithmic solutions to diversifying recommendations
[1, 76, 115, 124, 125]. More research needs to be done on whether these algorith-
mic solutions indeed result in perceptibly more diverse recommendations, and on
whether these recommendations reduce choice overload and increase user satisfac-
tion.

The layout of the recommendations on the screen determines the amount of at-
tention users pay to each recommendation. In a vertical list, users pay more attention
to the first few items than to items lower down the list [12], but this decay is much
less when using a grid layout [18]. In a grid layout, items in the top-left of the grid
are taken to be the most relevant [57]. Chen and Tsoi [20] show that if recommenda-
tions are divided over two pages, the items on the second page get very few clicks.
Comparing a list, grid and pie (circular) layout for recommendations, they find a
slight user preference for the pie layout. This layout does however take up much
more space on the screen.

In many commercial recommender systems the recommendations are organized
into distinct categories. Chen and Pu [17] have developed a “Preference-Based Or-
ganization Interface” that uses categories as a basis for critiquing. In their system,
the primary category has the user’s top recommendations, and each other category
explores a trade-off. Hu and Pu [52] show that this kind of categorization increases
the perceived diversity of the recommendations. Beyond this, the categorization of
recommendations has not received much attention in academic research but con-
sumer research literature [85, 103] suggests that categorization structures the user’s
choice task, and helps to overcome choice overload.

Another challenge for recommender systems is to explain their recommendations
(see [40, 41, 110] for an overview). Explanations can be based on the preferences
of similar users (e.g. “this item was rated highly by users similar to you”), simi-
lar items (e.g. “this is similar to other items you liked”), or attributes/keywords of
interest (e.g. “this has attributes you prefer”). Explanations can be presented textu-
ally (e.g. as a number, keyword, text or tag cloud) or visually (e.g. as a histogram
or pie chart). Research has found that users like explanations [50], and that they
increase users’ understanding of the recommendation process [41, 117], their trust
in the quality of the recommendations, and the competence and benevolence of the
system [24, 36, 119] (more on credibility and trust can be found in Chapter ??). This
in turn increases their purchase intentions [118] and their intention to return to the
system [94].

Which type of explanation works best? Research comparing different types of ex-
planation strategies has found that explanations based on the preferences of similar
users are persuasive: users tend to overestimate the quality of recommendations ex-
plained this way [10, 41, 50]. Item- and keyword-based explanations produce more
accurate expectations [10, 41] and ultimately lead to more satisfaction [41, 108].
Finally, Pu and Chen demonstrate that carefully organizing the list of recommenda-
tions may also be perceived as an implicit explanation [94]. This type of explanation
produces little perceived cognitive overhead.
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Tintarev and Masthoff [111] explore the idea of personalizing explanations to the
user. They show that users tend to like such personalized explanations, but that these
may actually be less effective than generic explanations. Social recommenders that
use a user’s friends instead of anonymous nearest neighbors for recommendation
purposes have an additional opportunity for explanation, as they can show how rec-
ommendations are linked to the preferences of the user’s friends. In [62] we demon-
strate that displaying such a “recommendation graph” increases the inspectability of
the recommendations, and ultimately users’ satisfaction with the system.

There is no doubt that explaining recommendations is beneficial for the user
experience, because they help users to increase their understanding of the recom-
mendation process. However, users can also use explanations to justify their choice
among the presented recommendations, which could arguably reduce choice over-
load and increase their decision confidence (see Chapter ??). We reiterate the con-
clusion by [72, 111] that future work should explore how explanations can help to
reduce choice overload and otherwise improve users’ decision-making.

Work on the presentation of recommendations generally considers variants of
the conventional “Top-N” list of recommendations. Alternative uses of recom-
mendations are becoming more prevalent in practice, though. Examples are “co-
recommendations” (“Users who bought this also bought. . . ” [89, 90]) and “smart
defaults” (recommendations as default settings for yes/no or multiple-option deci-
sions [61, 105]). The presentation of these types of recommendations has to date not
been investigated in much detail.

3 Practical Guidelines

We now turn to the practical part of this chapter, where we provide guidelines
regarding the different steps involved in recommender system user experiments.
Sect. 3.1 (Research Model) deals with developing a research model and hypotheses
for the experiment. Sect. 3.2 (Participants) discusses the recruitment of test users.
Sect. 3.3 (Manipulations) covers the operationalization of hypotheses into different
versions of the system and the process of randomly assigning participants to these
versions. Sect. 3.4 (Measurement) explains how to measure and analyze subjective
concepts like satisfaction with questionnaires. Sect. 3.5 (Statistical Evaluation), fi-
nally, explains how to statistically test the formulated hypotheses. The guidelines are
illustrated with existing user-centric work in the recommender systems field where
possible.

3.1 Research Model

The goal of a user experiment is to test the effect of some Objective System Aspect
(OSA) on the user’s Experience (EXP) and Interaction (INT). The Knijnenburg et
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al. [67] framework suggests that such effects are mediated by Subjective System
Aspects (SSAs), and possibly moderated by Personal and Situational Characteris-
tics (PCs and SCs). Before conducting the experiment, the specific constructs and
their expected interrelations should be presented as a research model consisting of a
set of testable hypotheses. Each hypothesis consists of an independent variable and
a dependent variable. Hypotheses are predictions about how the independent vari-
able influences the dependent variable (and optionally, how a moderating variable
qualifies this effect).

3.1.1 Determining Which OSAs Will Be Tested

The first step in developing a research model is to determine which OSAs will be
tested. In a typical experiment the OSAs are manipulated independent variables (see
Sect. 3.3): their presence, operation or appearance is altered between different ex-
perimental conditions, but these conditions are exactly the same otherwise (similar
to A/B testing). This concept of ceteris paribus (“all else remains the same”) is im-
portant, because it allows the researchers to trace differences in outcomes between
conditions back to the manipulated OSA. If aside from the manipulated OSA other
aspects differ between conditions as well, then these aspects are said to be con-
founded with the OSA: it is then impossible to determine whether the OSA or any
of these other aspects caused the difference in outcomes.

For example, in [68] we manipulated the algorithm by testing a system with an
SVD algorithm against the same system that was altered to select random items
as recommendations. The items were labeled as “recommendations” in both con-
ditions. If we had given the items different labels in each condition (e.g. “random
items” and “recommendations”), then the labeling would have been confounded
with the algorithm itself. I.e., if users judged the recommendations to have a higher
quality, this could be either because they indeed had a higher quality, or because the
“recommendations” label simply made users think that they had a higher quality. By
having the same label for the random items, we ruled out the latter explanation.

3.1.2 Selecting Appropriate Outcome Measures (INT and EXP)

The second step in developing a research model is to select appropriate outcome
measures (dependent variables). These are typically a combination of observed be-
haviors (INT) and questionnaire-based feedback (EXP). Although industry execu-
tives are typically most interested in objective outcomes that influence conversion
rates (i.e. INT), there are reasons why the inclusion of EXP variables is beneficial
for industry and academic researchers alike. First of all, users’ behavior is often
influenced by external factors (e.g. purchases may be gifts rather than a reflection
of the user’s taste; time on a page may be influenced by their Internet connection
speed), so the effects of OSAs on INT are less robust than on EXP. More impor-
tantly, studies that test behavioral variables only (i.e. conventional A/B tests) can
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detect behavioral differences, but they often say very little about how and why the
behavioral difference occurred. The explanation of behavioral effects is what drives
scientific discovery and sound corporate decisions, and a carefully selected combi-
nation of EXP and INT variables can provide such explanations.

Knijnenburg et al. [68] provides a good example of the importance of includ-
ing both EXP and INT variables in an experiment. Looking only at the behavioral
outcomes of this study, one would come to the conclusion that the system with the
SVD algorithm resulted in a shorter total viewing time and fewer clips clicked than
the system with random recommendations. This result may be counterintuitive, un-
til one includes perceived system effectiveness as a mediating EXP variable: The
system with the SVD recommender is perceived as more effective, which manifests
in less need for browsing, and hence a shorter viewing time and fewer clips clicked.
Only after incorporating both EXP and INT variables were we able to explain that
the SVD recommender system is indeed effective.

Experiments that measure EXP variables require that the researchers administer
questionnaires, which limits the scale of such experiments compared to conventional
A/B tests. As such, A/B tests can more effectively test the behavioral effects of a
large number of OSAs simultaneously (these tests are more appropriately called
“multivariate tests”). The optimal test plan therefore involves both: A/B tests are
used to discover interesting effects, while user experiments with questionnaires can
follow up these tests to explain how and why these interesting effects come about.

Generally speaking, a well-rounded research effort should use a combination of
INT and EXP variables: the EXP variables explain differences in participants’ be-
havior, while the INT variables “ground” the user experience in observable behavior.

3.1.3 Explaining The Effects With Theory And Mediating Variables (SSAs)

The inclusion of EXP variables alone is not always sufficient to explain how and
why users are more satisfied or behave differently between conditions. Moreover,
even if one can demonstrate that a certain OSA makes users more (or less) satisfied,
there needs to be a compelling argument about whether this finding is generalizable,
or rather just a one-off event. A theory that explains the hypothesized effects of a
study more thoroughly can provide a sense of its generalizability [45]. In this regard,
reseachers can consult existing theories of user experience [46, 47], technology ac-
ceptance [26, 116], attitudes and behaviors [2, 3, 4, 37], or the theory of how users
experience technology embedded in the Knijnenburg et al. [67] framework.

Just having a theory for the hypothesized effects is not enough, though; the ex-
periment can (and should) confirm these theories. In the words of Iivari [53], this
means translating the conceptual level theories to the descriptive level, which in-
volves not only developing hypotheses regarding expected effects of the OSA on
INT and EXP variables, but also hypotheses that explain how and why these effects
come about.

A theory can also help in fine-tuning experimental conditions to rule out alter-
native explanations. For example, choice overload theory suggests that choice over-
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load is moderated by the diversity of an item set, independent of its quality and
size [34, 103]. In Willemsen et al. [120, 121] we therefore took care to increase the
diversity of the recommendations witout reducing their quality, and we manipulated
the size of the item set independently from the diversity.

Another way to test theoretical explanations is to include mediating SSA vari-
ables in the research model. These SSAs serve both as a dependent variable (in the
hypothesized effect of OSA→ SSA) and an independent variable (in the hypothe-
sized effect of SSA→ EXP). For example, experiment FT4 in [67] tested two matrix
factorization algorithms, one using explicit feedback (MF-E) and the other using im-
plicit feedback (MF-I), against a system that recommended the (non-personalized)
most popular items. The results ([67], Fig. 9) showed that both algorithms (OSAs)
result in a more effective system (EXP) than the non-personalized version, but
that the reason for this differs per algorithm. Specifically, the MF-I recommenda-
tions are perceived to have a higher quality (OSA→ SSA), and these higher qual-
ity recommendations eventually result in a more effective system (SSA → EXP).
On the other hand, the MF-E recommendations are perceived to be more diverse
(OSA→ SSA), and these diverse recommendations are perceived to have a higher
quality (SSA→ SSA) and thus result in a more effective system (SSA→ EXP). The
mediating SSAs explain the different reasons why each algorithm leads to a more
effective system.

Finally, it may happen that the outcome variable does not differ between OSA
conditions. In some cases, a theoretical examination may point out that different
underlying effects could be counteracting each other, effectively cancelling out the
total effect of the OSA. One can then demonstrate this theoretical phenomenon by
measuring these underlying causes and including them as mediating variables in the
research model.

For example, in Bollen et al. [12] we showed that there was no effect of the exper-
imental conditions on overall choice satisfaction, but we were still able to demon-
strate the phenomenon of “choice overload” by incorporating the mediating vari-
ables item set attractiveness and choice difficulty. Specifically, the results showed
that more attractive item sets led to higher choice satisfaction, but that attractive sets
were also more difficult to choose from, which in turn reduced choice satisfaction.
We thereby demonstrated that good recommendations do not always lead to higher
choice satisfaction due to choice overload. Similarly, Nguyen et al. [87] showed that
the increased effectiveness of rating support by means of providing exemplars was
limited, because it was counteracted by increased difficulty of using this type of
support, compared to a baseline rating scale.

3.1.4 Include PCs and SCs Where Appropriate

The final step in developing a research model is to determine which PCs and SCs
may influence the outcome variable. Incorporating these aspects into the experiment
will increase the robustness of the results, so they should be considered even though
they are typically beyond the influence of the system.
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In some cases, the effect of the OSA on the outcome variable is hypothesized not
to hold universally, but only for a specific type of user or in a specific situation. In
that case, this PC or SC is said to moderate the effect of the OSA on the outcome.
Measuring the PC or SC is then crucial to determine the true effect of the OSA.

For example, in [66] we argued that domain novices and experts use differ-
ent strategies to make decisions, and that their ideal recommender system would
therefore require different preference elicitation methods. Our results demonstrated
that novices were indeed more satisfied with a case-based preference elicitation
method, while experts were more satisfied with an attribute-based preference elici-
tation method.

3.1.5 Practical Tip: Never Formulate a “No Effect” Hypothesis

It is important to note that with every hypothesis comes a null hypothesis, which
argues the absence of the effect described in the hypothesis. For example:

H0: There is no difference in perceived recommendation quality between algo-
rithm A and algorithm B.

H1: Participants perceive the recommendation quality of algorithm A to be higher
than algorithm B.

It is common practice in scientific writing to only state H1 and leave the null hy-
pothesis implicit. Statistical evaluations can never directly “prove” H1, but they can
support it by rejecting H0 [38]. Importantly though, the absence of support for H1
does not mean that H0 is supported instead. In other words, if the aforementioned
H1 is not supported, one cannot claim that there is no difference in perceived rec-
ommendation quality between algorithm A and B, only that the current study did
not find such an effect. In fact, providing support for the absence of an effect is very
difficult to do statistically [11]. Researchers are therefore advised to never formulate
a “no effect” hypothesis. Experiments should always be set up in such a way that
differences (not equalities) between experimental conditions prove the underlying
theory.

3.2 Participants

Finding participants to take part in the experiment is arguably the most time-
consuming aspect of conducting a user experiment. Participant recruitment involves
a tradeoff between gathering a large enough sample for statistical evaluation, and
gathering a sample that accurately reflects the characteristics of the target popula-
tion. Both considerations are discussed below.
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3.2.1 Sampling Participants

Ideally, the sample of participants in the experiment should be an unbiased (random)
sample of the target population. Creating a truly unbiased sample is practically im-
possible, but if one aspires to extrapolate the study results to real-world situations,
then the participants should resemble the users (or potential users) of the tested sys-
tem as closely as possible.

To avoid “sampling bias”, certain practices should be avoided. For example, it is
very tempting to ask colleagues, students or friends to participate, but these people
will arguably have more knowledge of the field of study than an average user. They
may even know what the experiment is about, which may unconsciously cause them
to behave more predictably. Your colleagues and friends may also be more excited
about the experiment, and they may want to please you, which may lead to socially
desirable answers [91, 107]. It is better when participants are “blind”, i.e. when they
have no “special” connection to the researcher, the system, or the experiment.

Another practice to avoid is to post a link to the study to one’s Facebook or Twit-
ter account, and ask for reposts/retweets. Again, the first-degree participants will
have a connection with the researcher, and should therefore be discarded. Partici-
pants who responded to the reposts/retweets will be more likely to resemble “blind”
users, but extra checks should be performed on them since they are recruited via a
“snowball sampling method” [32, 49, 78, 101].

Participant recruitment messages should be phrased carefully, because their
framing may influence who participates in the study and how participants approach
the tested system. It is generally better to give a generic description of the study
to avoid bias. Specifically, the description should focus on the task (“Test this mu-
sic recommender and answer a questionnaire”) rather than the purpose of the study
(“We are studying users’ privacy perceptions of a recommender system”). Avoid
technical terms, otherwise non-expert users may feel they are not knowledgeable
enough to participate (note that even the term “recommender system” itself may not
be common parlance for some potential users). Also make sure that the experiment
works in all major browsers (even older versions) and on both laptops and tablets.

In some cases it makes sense to limit participation in the experiment to a specific
subset of users, especially when some users cannot be given a meaningful experi-
ence. For example, in [62] we tested the inspectability and control of social rec-
ommenders using TasteWeights, a music recommender that uses overlap between
Facebook users’ music likes and their friends’ music likes to calculate recommenda-
tions. We limited participation in this experiment to Facebook users with sufficient
overlap between their own music likes and those of their friends. Users with insuf-
ficiently overlapping profiles were asked to either add more music likes or leave the
study. We argued that this was admissible because a real system would likely do
something similar. At the same time though, this meant that our conclusions would
only hold for eligible users, and not for the population at large.
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3.2.2 Determining the Sample Size

User experiments need a reasonable sample size (often reported as N) to allow ro-
bust statistical evaluation of the hypotheses. Increasing the number of participants
increases the statistical power of the experiment. Statistical power is the likelihood
of detecting an effect of certain size in a sample, given that the effect indeed exists in
the population. To determine the required sample size, researchers should perform a
power analysis [22, 35] using an estimate (based on previous work) of the expected
effect size of the hypothesized effects and an adequate power level (usually 85%).
In recommender systems research manipulations typically have small effects (caus-
ing differences of about 0.2–0.3 standard deviations in the dependent variables) and
occasionally medium-sized effects (differences of around 0.5 standard deviations).
To detect a small effect (0.3 SD) with a power of 85% in a between-subjects experi-
ment, 201 participants are needed per experimental condition. To detect a medium-
sized effect (0.5 SD), 73 participants are needed per condition. Within-subjects ex-
periments need far fewer participants: 102 to detect small effects, and 38 to test
medium-sized effects. Note, though, that there are additional sample size require-
ments for advanced statistical procedures like Factor Analysis (see Sect. 3.4.2) and
Structural Equation Modeling (see Sect. 3.5.3).

The results of “underpowered” studies should be mistrusted, even if they are
statistically significant. Due to low power, it is very likely that the experimenters
simply “got lucky” and found a spurious effect [88]. And even if the reported effects
are real, the effect sizes are inevitably overstated. Moreover, a low N means that the
study may not have an inductive base that is wide enough to generalize the findings
to the entire population, because small samples are likely to be biased.

For example, one of the first user-centric evaluations of a recommender system,
conducted by Sinha and Swearingen [104], employs only 19 participants. Even
though the authors find some significant results, the study is severely underpow-
ered so the conclusions cannot be generalized beyond this specific sample: the large
effect sizes reported are likely to be much smaller (if not absent) in the population.

3.2.3 Practical Tip: Run Your Studies on a Crowd-Sourcing Platform

In the past, participants were often recruited through volunteer panels painstak-
ingly built by universities, or through expensive consumer research panels man-
aged by marketing firms. This has changed with the rise of classified advertise-
ments and crowd-sourcing websites such as Craigslist and Amazon Mechanical
Turk. Craigslist allows researchers to post user experiments in various cities under
Jobs > Etcetera, and is very convenient for creating a geographically balanced sam-
ple. Amazon Mechanical Turk6 is often used for very small tasks, but Turk workers
appreciate more elaborate survey studies. A benefit of Mechanical Turk is that it
has anonymous payment facilities. Requesters can set certain criteria for workers

6 Mechanical Turk is currently only available for researchers in the United States, but various
alternatives for non-US researchers exist.
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that are allowed to participate, and experience has shown that it is good practice to
restrict participants to U.S. workers with a high reputation [58, 92].

In our experience, the demographics of Craigslist and Mechanical Turk partici-
pants reflect the general Internet population, with Craigslist users being a bit higher
educated and more wealthy. Turk workers are less likely to complain about tedious
study procedures, but are also more likely to cheat [30]. Ample attention and quality
checks can prevent cheaters from affecting the results. It is good practice to include
a contact email address as well as an open feedback item in the study to catch unex-
pected problems with the experiment.

3.3 Experimental Manipulations

In a typical user experiment, one or more OSAs are manipulated into two or more
experimental conditions following the ceteris paribus principle (see Sect. 3.1). OSAs
can be manipulated in various ways. One can turn the OSA on or off (e.g. display
predicted ratings or not), test different versions of the OSA (e.g. implicit versus
explicit preference elicitation), or test several levels of the OSA (e.g. display 5, 10 or
20 recommendations). This section explains how to create meaningful experimental
conditions, and how to randomly assign participants to them.

3.3.1 Selecting Conditions to Test

The goal of many user experiments is to demonstrate the superiority of some new
invention: a new algorithm, preference elicitation method, or recommendation dis-
play technique. In such experiments, the condition with the new invention (called
the treatment condition) should be tested against a reasonable baseline condition. A
baseline should be included even when several treatment conditions are compared
against each other, because the baseline condition links the study conditions to the
status quo in recommender systems research.

Selecting a baseline can be difficult. For example, one could compare a recom-
mender system against a non-personalized system, but the results of such an unbal-
anced comparison are usually unsurprising [114]. On the other hand, recommender
systems are definitely not always better than their non-personalized variant, so a
comparison with a non-personalized system may very well be justified when testing
a recommender in a new domain [21]. Another option is to test against the state-of-
the-art (e.g. what has proven to be the best algorithm, preference elicitation method,
or recommendation display technique in previous work).

Not all manipulations consist of a specific baseline and treatment condition.
Sometimes (especially when the experiment focused on the users’ interaction with
the recommender system rather than some new invention) there is no accepted base-
line. A range of plausible conditions should then be considered in a way that max-
imizes the opportunity for the effect to occur, while staying within the realm of
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plausibility. For example, testing a recommendation list length of 5 versus 300 rec-
ommendations is likely to produce a choice overload effect, but finding choice over-
load in lists of more plausible lengths (e.g. 20 items) is practically much more use-
ful. Making the manipulation too subtle (e.g. testing lists of 5 versus 6 items) may
not produce a choice overload effect, or the effect may be so small that many more
participants are needed to detect it.

3.3.2 Including Multiple Manipulations

The simplest user experiment includes a single manipulation with two experimental
conditions. One can also create multiple experimental conditions per manipulation,
e.g. when manipulating recommendation list length one can test lengths of 5, 10 and
20. It is also possible to manipulate multiple OSAs in a single experiment, and this is
especially interesting when these OSAs are expected to have an interaction effect on
the outcome variables. Interaction effects occur when a certain manipulation has an
effect in certain condition(s) of the other manipulation, but no effect (or the opposite
effect) in the other condition(s) of the other manipulation.

For example, in [120] we showed that high-diversity recommendations were per-
ceived as more attractive, were easier to choose from, and led to higher system sat-
isfaction than low-diversity recommendations, but only for short recommendation
lists (5 recommendations). In longer lists, there was no difference between high-
and low-diversity recommendations. We concluded that giving users recommenda-
tion lists that are both short and diverse could reduce choice overload.

When multiple OSAs are considered simultaneously like in the example above,
these OSAs should be manipulated independently, or orthogonally by creating an
instance of the system for each possible combination of conditions. The example
above considered a 2-by-3 experiment (2 levels of diversity, 3 list lengths), which
resulted in 6 experimental conditions.

3.3.3 Setting Up Between-Subjects or Within-Subjects Randomization

There are essentially three ways in which participants can be assigned to experimen-
tal conditions. In a between-subjects experiment, participants are randomly assigned
to one of the experimental conditions. A benefit of between-subjects experiments is
that the manipulation remains hidden from the participant, since each participant
sees only one condition. This also makes the experiment more realistic, because
users of real systems usually also only see a single version of the system. The aver-
ages of outcome variables are compared between conditions to see if the OSA had
an effect on the outcomes. By assigning participants to conditions randomly, any
differences between participants are leveled out. These differences can still cause
random fluctuations in the outcomes, though, which is why between-subjects exper-
iments typically need a larger N to attain an adequate level of statistical power.
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Our study on different interfaces for an energy-saving recommender [65] is a
good example of a between-subjects experiment. In the experiment different prefer-
ence elicitation methods are tested, and users’ satisfaction with the chosen energy-
saving measures is an important outcome variable in the experiment. Having par-
ticipants go through the same process of choosing energy-saving measures several
times would have been rather weird, and users would have been able to guess the
purpose of the different preference elicitation methods, which could have affected
the results. With 5 conditions and a number of moderating PCs, the 147 participants
recruited for this study were a bare minimum, though.

In a sequential within-subjects experiment, participants interact with both ex-
perimental conditions, one at a time. A benefit of within-subjects experiments is
that differences in outcomes can be compared for each participant, which effec-
tively eliminates the between-participant variability. As a result, fewer participants
are needed to attain an adequate level of statistical power. A downside is that par-
ticipants may be able to guess the experimental manipulation, and that repeating
the same experiment several times may feel unnatural. Moreover, participants may
react differently the second time they walk through the experiment. Randomizing
the order in which participants see the conditions prevents the order from becoming
confounded with the condition in the overall analysis.

In [121] we provide a good example of a within-subjects manipulation. In that
study we tested three levels of diversification of the recommendations. The three
different recommendation lists were presented in random order. Other than contain-
ing different items, the lists showed no apparent differences, so it was not possi-
ble for participants to guess the purpose of the study. Moreover, the presented lists
were sufficiently different that the task of selecting an item from the list did not
feel repetitive. Due to the within-subjects setup, the study was able to detect subtle
differences between conditions. The study additionally manipulated the list length
between-subjects, but no differences between length conditions (or interactions with
diversification) were found.

Pu and Chen [94] also use a within-subjects manipulation, to test two differ-
ent presentation techniques for recommendations. Each participant completes two
tasks, one with each presentation technique. To avoid repetitiveness, the tasks in-
volve different recommendation domains (digital cameras and notebooks). The pre-
sentation order of domains and techniques are manipulated between-subjects in a
2-by-2 setup; this cancels out any order- and task-effects. They then compare the
presentation techniques using within-subjects tests.

In a simultaneous within-subjects experiment, participants experience all condi-
tions at the same time. This allows participants to compare the different conditions
and choose which one they like best. This again reduces between-participant vari-
ability, and also avoids order effects. Note though that the position of experimental
conditions should be randomized, because we do not want to confound condition
with position on the screen. The advantage of this method is that it can detect very
subtle differences between conditions. The downside is that showing two conditions
simultaneously is obviously a far cry from a realistic usage scenario.
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As an example of a simultaneous within-subjects experiment, Ghose et al. [43]
considered a novel ranking algorithm for a hotel and travel search site based on
crowd-sourced content. Their study pairs the proposed algorithm with several dif-
ferent baseline algorithms. Each pair is tested as a simultaneous within-subjects
experiment, where the two rankings produced by the proposed algorithm and the
baseline algorithm are presented side-by-side, and users choose which ranking they
prefer. The results show that their proposed algorithm is significantly preferred over
13 different baselines in six different cities. On average, twice as many participants
prefer the recommendations of the proposed algorithm to the baseline.

Ekstrand et al. [31] also conducted a simultaneous within-subject design, and
they chose this design because they were interested in detecting subtle differences
between two recommendation lists produced by common algorithms (user-user,
item-item and SVD). Like Ghose et al. [43] Users were asked which list they pre-
ferred, but also to indicate perceived differences between the lists in terms of the
relative satisfaction, novelty and diversity. Importantly, Ekstrand et al. were able to
link these perceived differences to objective measures of recommendation quality
(e.g., perceived novelty was predicted by popularity rank). The results show that
novelty (which was highest for the user-user algorithm) had a negative effect on
satisfaction and preference for a list, whereas diversity showed a positive effect.

Increased realism is the main reason why between-subjects experiments are more
appropriate than within-subjects experiments in most recommender system studies.
Note, however, that even a between-subjects experiment is not completely natural:
participants know that they are part of an experiment, and may therefore behave dif-
ferently. This is called the Hawthorne effect [75]. In experiments that involve real
systems, the Hawthorne effect can be detected by comparing the behavior of partic-
ipants in (the baseline condition of) the experiment with the behavior of participants
in the real system (or in an A/B test). If behaviors are substantially different, this is
likely due to the Hawthorne effect.

3.3.4 Practical Tip: Think Big, Start Small

Designing experimental manipulations often involves difficult trade-offs. With sev-
eral orthogonal manipulations with multiple variants each, the number of experi-
mental conditions will grow exponentially. Since the number of participants needed
to attain a certain level of statistical power grows linearly with the number of con-
ditions, it is advisable to keep the number of conditions low.

The best strategy is therefore to think big, but start small: write down all possible
versions of all OSAs that are relevant to the study in an experiment plan, but then
start investigating the manipulation that seems most likely to cause an effect. If this
experiment indeed detects the effect, subsequent experiments can be conducted to
test different levels of the manipulation, or to include additional manipulations that
may moderate (i.e. interact with) the existing effect.

In [16], for example, Chen and Pu identified several OSAs that may influence the
effectiveness and usability of critiquing-based recommender systems: the number of
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recommendations presented in the first round of preference elicitation, the number
of alternatives presented after each round of critiquing, and whether the user initiates
the critiquing or the system suggests critiques (for both unit critiques and compound
critiques). They systematically explored these parameters in a series of 2-condition
experiments. By keeping the setup of the experiments consistent, they were even
able to make comparisons across experiments.

Consistent with the “think big, start small” mantra, it is in some cases perfectly
acceptable to simplify a system to increase experimental control. For example, the
original TasteWeights system [14] allows you to inspect connections between liked
items, friends, and recommendations, and control the weights of both liked items
and friends. In our user experiment of this system [62] we wanted to test the influ-
ence of these features separately, so we split the interaction into two steps: a control
step and an inspection step. This allowed us to manipulate the control and inspection
OSAs independently, which resulted in a much “cleaner” experimental design.

3.4 Measurement

In this section we present best practices for measuring perceptions (SSAs), experi-
ences (EXPs) and personal and situational characteristics (PCs and SCs) using ques-
tionnaires. Most importantly, we give the reader a practical example of performing
a Confirmatory Factor Analysis (CFA) using MPlus7, a state-of-the-art statistical
software package, and Lavaan8 a package for R that has many of the same features.

3.4.1 Creating Measurement Scales

Due to their subjective nature, measuring perceptions, experiences, and personal
and situational characteristics is not as easy as it may seem. Whereas objective traits
can usually be measured with a single question (e.g. age, income), this is not advis-
able for subjective concepts. Single-item measurements such as “On a scale from
1 to 5, how much did you like this system?” are said to lack content validity: each
participant may interpret the item differently. For example, some may like the sys-
tem because of its convenience, others may like it because of its ease of use, and
again others may like it because the recommendations are accurate. These different
interpretations reduce the precision and conceptual clarity of the measurement.

A better approach is to create measurement scales consisting of multiple items;9

at least 3 but preferably 5 or more. This is a delicate process that usually involves
multiple iterations of testing and revising items. It is advisable to first develop
around 10–15 items and then reduce it to 5–7 through discussions with domain

7 http://www.statmodel.com/
8 http://lavaan.ugent.be/
9 Or, multiple measurement scales for the different constructs (e.g. system satisfaction, ease of use,
and recommendation quality), each measured with mutiple items.
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experts and comprehension pre-tests with test subjects. 1–2 additional items may
still be discarded during the analysis of the actual study results.

The items in most user experiments are phrased as statements (e.g. “The system
was easy to use”) to which participants are asked to express their agreement on a 5-
or 7-point scale (from “strongly disagree” to “strongly agree”). Studies have shown
that participants find such items easy to answer. There are a few additional tips for
designing good questionnaire items:

• Invest a lot of time in deciding upon a clear definition of the construct to be
measured, and check for each item whether it fits the construct definition.

• Include both positively and negatively phrased items. This will make question-
naires less leading, and allows one to explore the flipside of the construct. It
also helps to filter out participants who do not carefully read the items. However,
avoid the word “not”, because it is too easily overlooked.

• Study participants may not have a college degree, so their reading level may be
low. Use simple words and short sentences to aid comprehension. Like with the
recruitment message, try to avoid technical terms.

• Avoid double-barreled questions. Each item should measure only one thing at a
time. For example, if a participant found the system fun but not very useful, they
would find it hard to answer the question “The system was useful and fun.”

As mentioned, it is a good idea to pre-test the questionnaire items with experts;
they can give advice on how to accurately define the concept to be measured, and
on whether the proposed questionnaire items cover all aspects of the concept. Fur-
thermore, comprehension pre-tests can be conducted to test how well participants
understand the questionnaire items. A comprehension pre-test invites participants to
read the questionnaire items aloud and to explain their reasoning while answering
the questions. Their think-aloud answers can highlight questionaire items that are
unclear or interpreted incorrectly.

3.4.2 Establishing Construct Validity

Once a set of items has been developed that accurately reflects the concept to be
measured (i.e. content validity is established), the next step is to establish construct
validity, i.e. to make sure that the items comprise a robust and valid measurement
scale. For the purpose of statistical analysis, each multi-item measurement scale
has to be turned into single variable. Summing the item scores may seem like the
most straightforward way of doing this, but Confirmatory Factor Analysis (CFA)
is a more sophisticated solution that not only creates the measurement variable but
also tests some of the preconditions for construct validity along the way.

Listings 1 and 2 show example input of a CFA as ran in MPlus and Lavaan. The
output of these tools is very similar, so we present it for MPlus only (Listing 3). The
example CFA is based on an experiment with a social network based music rec-
ommender system [62]. This system employs an innovative graph-based interface
that shows how the users’ Facebook music “likes” overlap with their friends’ music
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“likes”, and how these friends’ other music “likes” are in turn used to create a set of
recommendations. In the graph, users can trace back each recommendation to the
friends that “liked” that item, and to the overlapping “likes” that caused these friends
to be part of the user’s nearest-neighborhood. We argued that this graph would pro-
vide a good justification for the recommendations, thereby increasing the perceived
recommendation quality (quality) and the understandability of the recommender
system (underst). Moreover, we allowed users to control either the weights of their
“likes” or the weights of their friends, and we argued that this would influence their
perceived control (control). Finally, we argued that perceived recommendation
quality, understandability, and control would ultimately increase users’ satisfaction
with the system (satisf).

The CFA validates the four subjective measurement scales of the experiment.
Each scale is represented by a latent factor, with each item loading on its designated
scale (MPlus: lines 8–11, Lavaan: lines 2–5). The output shows the loadings of the
items on the factors (lines 1–30), which are proportional to the extracted variance
(lines 42–67). The factors may be correlated with each other (lines 32–40). The
solution has no standard scale, so we include code (MPlus: line 12, Lavaan: lines
6–9) to give the factors a standard deviation of 1 and a mean of 0.10 We also de-
clare all items as ordered categorical (MPlus: line 6, Lavaan: line 12), because they
are measured on a 5-point scale. Otherwise, the items would be treated an interval
scale, which would assume that the difference between “completely disagree” (1)
and “somewhat disagree” (2) is the same as the difference between “neutral” (3) and
“somewhat agree” (4). MPlus and Lavaan model ordered categorical variables in a
way that does not make this assumption.

Listing 1 CFA input, MPlus

1 DATA: FILE IS twc.dat; !specify the data file
2 VARIABLE: !list the variable names (columns in the data file)
3 names are s1 s2 s3 s4 s5 s6 s7 q1 q2 q3 q4 q5 q6
4 c1 c2 c3 c4 c5 u1 u2 u3 u4 u5 cgraph citem cfriend;
5 usevariables are s1-u5; !specify which vars are used
6 categorical are s1-u5; !specify which vars are categorical
7 MODEL: !specify each factor as [factorname] by [vars]
8 satisf by s1* s2-s7; !satisfaction
9 quality by q1* q2-q6; !perceived recommendation quality

10 control by c1* c2-c5; !perceived control
11 underst by u1* u2-u5; !understandability
12 satisf-underst@1; !set the std. dev. of each factor to 1

10 MPlus and Lavaan use a different parameterization by default by fixing the loading of the first
item to 1. We free up these loadings by including an asterisk after (MPlus) or NA* before (Lavaan)
the first item of each factor. This alternative solution conveniently standardizes the factor scores.
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Listing 2 CFA input, Lavaan (R package)

1 model <- ’ #specify each factor as [factorname] =∼ [vars]
2 satisf =∼ NA*s1+s2+s3+s4+s5+s6+s7 #satisfaction
3 quality =∼ NA*q1+q2+q3+q4+q5+q6 #perceived rec. quality
4 control =∼ NA*c1+c2+c3+c4+c5 #perceived control
5 underst =∼ NA*u1+u2+u3+u4+u5 #understandability
6 satisf ∼∼ 1*satisf #set the std. dev. of each factor to 1
7 quality ∼∼ 1*quality
8 control ∼∼ 1*control
9 underst ∼∼ 1*underst

10 ’;
11 fit <- sem(model, data=twc, #specify the dataset
12 ordered=names(twc)); #specify which vars are categorical
13 summary(fit, rsquare=TRUE); #produce model fit and Rˆ2 values

Listing 3 CFA output

1 MODEL RESULTS
2 Two-Taile
3 Estimate S.E. Est./S.E. P-Value
4 SATISF BY
5 S1 0.887 0.018 49.604 0.000
6 S2 -0.885 0.018 -48.935 0.000
7 S3 0.770 0.029 26.982 0.000
8 S4 0.821 0.025 32.450 0.000
9 S5 0.889 0.018 50.685 0.000

10 S6 0.788 0.031 25.496 0.000
11 S7 -0.845 0.022 -38.426 0.000
12 QUALITY BY
13 Q1 0.950 0.013 72.837 0.000
14 Q2 0.949 0.013 73.153 0.000
15 Q3 0.942 0.012 77.784 0.000
16 Q4 0.805 0.033 24.332 0.000
17 Q5 -0.699 0.042 -16.700 0.000
18 Q6 -0.774 0.040 -19.428 0.000
19 CONTROL BY
20 C1 0.711 0.038 18.653 0.000
21 C2 0.855 0.024 35.667 0.000
22 C3 0.906 0.022 41.704 0.000
23 C4 0.722 0.037 19.276 0.000
24 C5 -0.425 0.056 -7.598 0.000
25 UNDERST BY
26 U1 -0.568 0.048 -11.745 0.000
27 U2 0.879 0.019 46.539 0.000
28 U3 0.748 0.031 24.023 0.000
29 U4 -0.911 0.020 -46.581 0.000
30 U5 0.995 0.014 70.251 0.000
31 QUALITY WITH
32 SATISF 0.686 0.033 20.541 0.000
33 CONTROL WITH
34 SATISF -0.760 0.028 -26.962 0.000
35 QUALITY -0.648 0.040 -16.073 0.000
36 UNDERST WITH
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37 SATISF 0.373 0.049 7.581 0.000
38 QUALITY 0.292 0.059 4.932 0.000
39 CONTROL -0.396 0.051 -7.736 0.000
40
41 R-SQUARE
42 Observed Residual
43 Variable Estimate Variance
44 S1 0.788 0.212
45 S2 0.783 0.217
46 S3 0.593 0.407
47 S4 0.674 0.326
48 S5 0.790 0.210
49 S6 0.622 0.378
50 S7 0.714 0.286
51 Q1 0.903 0.097
52 Q2 0.901 0.099
53 Q3 0.888 0.112
54 Q4 0.648 0.352
55 Q5 0.488 0.512
56 Q6 0.599 0.401
57 C1 0.506 0.494
58 C2 0.731 0.269
59 C3 0.820 0.180
60 C4 0.521 0.479
61 C5 0.180 0.820
62 U1 0.322 0.678
63 U2 0.772 0.228
64 U3 0.560 0.440
65 U4 0.831 0.169
66 U5 0.990 0.010

As mentioned earlier, an advantage of using CFA over simply summing the item
scores is that it can help establish the construct validity of the measurement scales.
Specifically, CFA can be used to establish convergent and discriminant validity.
Convergent validity determines whether the items of a scale measure a single con-
struct (i.e. that the scale is not a combination of multiple constructs, or simply a col-
lection of items with no common ground), while discriminant validity determines
whether two scales indeed measure two separate constructs (i.e. that two scales are
not so similar that they actually measure the same construct).

Convergent validity is said to hold when the average variance extracted (AVE)
from the items measuring the factor is larger than 0.50. Beyond that, a higher AVE
indicates more precise measurement. The AVE can be calculated by averaging the
R2 values for all items of a factor (e.g., lines 54–60 for satisf and lines 61–66
for quality). The AVE can be improved by iteratively removing items with low
loadings. Doing this for the presented data removes items C5, U1 and U3 from the
model, respectively. Bear in mind that at least three items should remain per factor,
because a factor with only two items has no free parameters for estimation. Gen-
erally speaking, more items provide a better definition of the construct, and aiming
for 4–5 items per construct is good practice.
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In some cases convergent validity does not hold because a factor actually mea-
sures more than one construct. For example, in [63] we found that information dis-
closure to an app recommender system actually consisted to two correlated factors:
demographics disclosure and context data disclosure. If there exists some uncer-
tainty about the factor structure, an Exploratory Factor Analysis (EFA) can be used
to discover the correct factor structure.11 EFA initially makes no assumptions about
which items load on which factors, but tries to find a “clean” factor structure (with
each item loading on one of the factors) that best fits the data. In [64] we employ
this technique to discover the various dimensions of information disclosure in three
different datasets. We first run several EFAs with an increasing number of factors to
determine the optimal number of dimensions (looking at fit statistics and the con-
ciseness of the model). Then we inspect the model to determine the optimal factor
structure, and conduct a CFA to generate the final measurement model.

Discriminant validity is called into question when two scales are too highly cor-
related (i.e. when the correlation is higher than the square root of the AVE of either
of the two factors). In that case the scales measure essentially the same thing, which
means that they can be combined, or that one of the scales can be discarded. For ex-
ample, in FT2 of [67] we originally tried to measure separate factors for perceived
usefulness and fun. These factors were however so highly correlated that we ended
up integrating them into a single factor.

There is no consensus on the sample size needed for CFA, but 100 participants
seems to be a bare minimum, or 200 when unvalidated factors are tested [79]. Larger
CFAs probably require even more participants: a rule of thumb is to have at least 5
participants per questionnaire item.

3.4.3 Practical Tip: Use Existing Scales

Developing measurement scales from scratch is a time-consuming activity. Re-
searching new phenomena often calls for specialized measurement scales, so this
effort is in many cases unavoidable. A good tip is to look for related measurement
scales and adapt them to the experiment at hand. For example, in [70] we developed
scales for privacy concerns and protection as system- and provider-specific versions
of existing scales. Surprisingly little scale development work has been done in the
Human-Computer Interaction field; the Management Information Systems field is a
much better source for related scales.

Most experiments also include some more general constructs that can be copied
verbatim from existing work (this is considered good practice, not plagiarism). Two
sources for existing scales related to recommender systems are the Knijnenburg et
al. [67] framework paper and the ResQue framework developed by Pu, Chen and
Hu [95]. In Knijnenburg et al. [67] we include scales for the following concepts:

11 Moreover, even if you are more or less certain about the factor structure of a CFA model, it
pays to consult the modification indices of the model. The use of modification indices and CFA
goes beyond the current chapter, but is thoroughly explained in Kline’s [59] practical primer on
Structural Equation Models.
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• Perceived recommendation quality (SSA)
• Perceived recommendation accuracy (SSA)
• Perceived recommendation variety (SSA)
• Perceived system effectiveness (and fun) (EXP)
• Choice Difficulty (EXP)
• Choice Satisfaction (EXP)
• Effort to use the system (EXP)
• Intention to provide feedback (INT)
• General trust in technology (PC)
• System-specific privacy concern (SC)

Pu, Chen and Hu [95] include scales for the following concepts (classification ours,
only scales with more than 2 items are included):

• Interface adequacy (SSA)
• Interaction adequacy (SSA)
• Control (SSA)
• Perceived usefulness (EXP)
• Confidence and trust (EXP)
• Use Intentions (INT)

Despite the fact that the measurement properties of these scales have been tested
before, it is still wise to perform factor analysis on new experimental data to make
sure that the constructs are robustly measured in the context of the new experiment.

3.5 Statistical Evaluation

Once the validity of measurements is established and scales have been constructed,
the next step is to statistically test the formulated hypotheses. Note that the prac-
tice of statistical evaluation is continuously evolving, developing tests that are ever
stronger and more robust. One of the most prominent changes is the transition from
piecewise statistical testing to integrative approaches that evaluate entire research
models and provide simultaneous tests of all hypothesized effects.

As most scholars have been trained in piecewise statistical testing (primarily
t-tests, ANOVAs, and regressions), we will briefly discuss this approach first, but
assume that the reader is already familiar with the mechanics of conducting such
tests. Instead, we will focus mainly on the assumptions that such tests make about
the data, and the consequences when these assumptions are violated. Subsequently
we will discuss the integrative approach in more detail by giving the reader a prac-
tical example of testing a Structural Equation Model (SEM) in MPlus and Lavaan.
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3.5.1 Piecewise Statistical Testing: T-tests, ANOVAs, and Regressions

Most researchers perform piecewise tests of their hypotheses, which means that they
perform a separate test of each dependent variable. The dependent variable is typi-
cally a continuous variable that is either an observed behavior (INT) or a measured
construct (SSA or EXP). For measured constructs, individual item scores are trans-
formed into a scale score, either by saving the factor scores from the CFA or by
simply summing the item scores (after establishing construct validity with a CFA).
The independent variables can either be manipulated OSAs (i.e. the experimental
conditions), continuous variables (SSA, EXP or INT), or both.

The difference between two experimental conditions (e.g., the effect of a manipu-
lated OSA on a continuous outcome) can be tested with a t-test. For between-subject
manipulations (see Sect. 3.3), one uses an independent (2-sample) t-test. For within-
subjects manipulations, one should use a paired (1-sample) t-test.

The main outcome of a t-test is the t-statistic and its p-value; a smaller p-value
signifies more evidence against the null-hypothesis. We typically reject the null hy-
pothesis at p < .05. It is important to also look at the actual difference in the de-
pendent variable between the experimental conditions: does this difference signify
a substantial effect? For example, the difference between spending $150 and $151
in an e-commerce recommender may not be substantial enough to be practically
relevant, especially if that difference is caused by a computationally expensive new
recommendation algorithm.

The difference between more than two conditions can be tested with an ANOVA
(or a repeated measures ANOVA in case of a within-subjects design). The ANOVA
test produces an F-statistic; its p-value signifies evidence against the null hypoth-
esis that the dependent variable has the same value in all conditions. When this
“omnibus” test is significant, it is usually followed up by testing specific conditions
against each other.

Multiple manipulations can be tested simultaneously with a factorial ANOVA.
Factorial ANOVA tests exist for between-subjects, within-subjects and mixed (both
within- and between-subjects) experiments. The factorial ANOVA will provide test
statistics for each manipulation as well as the interaction between the manipulations.
Due to the complexity of such interaction effects, it is often helpful to plot the mean
of the dependent variable for each (combination of) experimental condition(s). Vi-
sually inspecting this plot will give you a good understanding of the effects; the
ANOVA results can then be used to find out whether these effects are likely to be
real or due to chance variation.

The effect of one or more continuous independent variables on a continuous de-
pendent variable can be tested with a linear regression (or a multilevel regression in
case of a within-subjects design). Each independent variable receives a β -weight,
which signifies the effect of a 1-unit difference in the independent variable on the
dependent variable. A t-statistic and a p-value signify the evidence against the null
hypothesis that this β -weight is zero. The regression also has an R2-value, which is
the percentage of the variance of the dependent variable that is explained by the set
of independent variables.



Evaluating Recommender Systems with User Experiments 29

Combinations of continuous independent variables and experimental manipula-
tions can be tested with either a linear regression or an ANCOVA; note that all the
mentioned tests are essentially special cases of linear regression, so a linear regres-
sion can in principle be used in any of the mentioned situations.

3.5.2 Assumptions of Statistical Tests

The real art of statistical evaluation is to know when not to apply a certain statisti-
cal test. Virtually all statistical tests make certain assumptions about the data, and
violating these assumptions may invalidate the results of the test.

A very common violation is that of multiple comparisons. The purpose of any
statistical test is to decide whether an observed effect is “real” or due to chance
variation. Taking p < .05, we essentially allow an error margin of 5%: only 1 out
of every 20 chance variations is expected to test significantly. However, if we have
k conditions and we test for differences between all possible pairs of conditions,
the family-wise error (i.e. the chance that at least one chance variation tests signifi-
cantly) grows considerably. At k = 5 this amounts to 10 tests, and the family-wise er-
ror rate is 40%. To prevent this problem, one should always perform an omnibus test
(e.g. the F-test in ANOVA) to first make sure that there are differences between con-
ditions. Next, one can pick a baseline condition and compare all conditions against
that condition, or one can perform all pairwise tests but calculate a more stringent
p-value using post-hoc test methods such as the Bonferroni correction.

Another common violation is that of data type and non-normality. The t-test,
ANOVA and regression all assume that the dependent variable is a normally dis-
tributed interval12 variable that is unbounded within its predicted range. This is by
definition true for factor scores (SSA and EXP), but not for most interaction vari-
ables (INT) such as number of clicks, time (bounded by zero), star ratings (bounded
and discrete), or purchase decisions (yes/no). Certain non-normality problems can
be solved by applying a formulaic transformation to the dependent variable to make
its distribution more normal. For example, most zero-bounded variables such as time
become more normal by applying a log transformation: xt = ln(x+ a), where a is
a fraction of x, chosen in such a way that xt has a fairly normal distribution. Data
type problems can be accounted for by using generalized linear models (GLMs) or
robust regression algorithms. For example, logistic regression can test nominal out-
comes, and Poisson or negative binomial regressions can model count data. Many
textbooks suggest the use of non-parametric tests, but these are old-fashioned solu-
tions to non-normality problems, and typically do not work for non-continuous data
types; GLMs and robust regressions are typically much more powerful ways to deal
with non-normal data and alternative data types.

Arguably the most severe violation is that of correlated errors. This problem
occurs when repeated measurements on the same participant are treated as indepen-

12 An important property of the “interval” data type is that differences between values are compa-
rable. This is for instance not true for a rating score: the difference between 1 and 2 stars is not
necessarily the same as the difference between 3 and 4 stars (cf. [74]).
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dent. Repeated measurements do not only occur in within-subjects experiments, but
also when a certain variable is measured several times, such as the lengths of sev-
eral sessions from the same participant, or the ratings of several items per session.
One can solve this problem by taking the average of the repeated measurements and
do the analysis with those average values, but this reduces the number of observa-
tions (and thereby the statistical power), and that it becomes impossible to make
inferences about individual sessions/ratings/etc. An alternative solution is to use an
advanced regression method that allows one to estimate the error correlations result-
ing from repeated measurements (i.e. multilevel regression).

Advanced regression techniques have been developed for data that are both non-
normal and repeated, e.g. generalized linear mixed models (GLMM) and general-
ized estimating equations (GEE). The algorithms implementing these methods are
under continuous development. Due to the complexities of such analyses, it is a
good advice to consult a statistician if your data happens to have such structure.

3.5.3 Integrative Statistical Testing: Structural Equation Models

In this section we present the state-of-the-art of statistical testing: Structural Equa-
tion Modeling (SEM). SEM is an integrative statistical procedure, because it tests
the measurement model and all hypotheses (known as the structural model, or path
model) at the same time. Practically speaking, a SEM is a CFA where the factors are
regressed on each other and on the experimental manipulations. Observed behaviors
(INT) can also be incorporated in SEM.

Listings 4–6 present example input and output of a SEM as ran in MPlus and
Lavaan, using the same example as the CFA ([62], see section 3.4.2), but adding
the two experimental manipulations of the experiment. The ‘control’ manipulation
has three conditions: In the ‘item control’ condition participants can set a weight
for each their “likes”, which in turn determines the weight for each friend that also
likes these items. In the ‘friend control’ condition participants can set a weight for
each of their friends directly. Finally, in the ‘no control’ condtion participants do
not set any weights at all (i.e. items are weighted equally, and friend-weights are
based on the number of overlapping items). This manipulation is represented by two
dummies: citem is 1 for participants in the ‘item control’ condition; cfriend is 1
for participants in the ‘friend control’ condition. Both variables are 0 for participants
in the ‘no control’ condition, making this the baseline condition.

The ‘inspectability’ manipulation has two conditions: In the the ‘full graph’ con-
dition participants get to see the graph-based interface; in the ‘list only’ condition
they get to see a list of recommendations only. This manipulation is represented by
the dummy variable cgraph, which is 1 for participants in the ‘full graph’ condition
and 0 for participants in the ‘list only’ baseline condition.13

13 Here we do not discuss the interaction effect between inspectability and control. This interaction
can be tested by multiplying their dummies, creating cgraphitem and cgraphfriend. These
dummies represent the additional effect of item- and friend-control in the graph condition (and
likewise, the additional effect of the graph in the item- and friend-control conditions).
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For the CFA part of the model we specify the optimized CFA with the items
C5, U1 and U3 removed (MPlus: lines 8–12, Lavaan: lines 2–9; the CFA output is
excluded for brevity). The input now also includes a structural part that specifies the
regressions of each dependent variable on the independent variables (MPlus: lines
13–16, Lavaan: lines 10–13). The output of these regressions (lines 18–46) can be
interpreted as traditional regression outcomes with β -weights, standard errors, a test
statistic, and a p-value. The β -weight for cgraph tests the difference between the
‘full graph’ and ‘list only’ condition, while the β -weights for citem and cfriend

compare these conditions with the ‘no control’ condition. We conduct an omnibus
test for the effect of the control manipulation on understandability (MPlus: lines
16–17, Lavaan: lines 13 and 17), and the output shows that the overall effect of this
manipulation is significant (lines 6–9).

Listing 4 SEM input, MPlus

1 DATA: FILE IS twc.dat;
2 VARIABLE:
3 names are s1 s2 s3 s4 s5 s6 s7 q1 q2 q3 q4 q5 q6
4 c1 c2 c3 c4 c5 u1 u2 u3 u4 u5 cgraph citem cfriend;
5 usevariables are s1-c4 u2 u4 u5 cgraph citem cfriend;
6 categorical are s1-u5;
7 MODEL: !specify regressions as [factor] on [predictors]
8 satisf by s1* s2-s7;
9 quality by q1* q2-q6;

10 control by c1* c2-c5;
11 underst by u1* u2-u5;
12 satisf-underst@1;
13 satisf on quality control underst cgraph citem cfriend;
14 quality on control underst cgraph citem cfriend;
15 control on underst cgraph citem cfriend;
16 underst on cgraph citem cfriend (p1-p3);
17 MODEL TEST: p2=0; p3=0; !conduct the omnibus test

Listing 5 SEM input, Lavaan (R package)

1 model <- ’ #specify regressions as [factor] ∼ [predictors]
2 satisf =∼ NA*s1+s2+s3+s4+s5+s6+s7
3 quality =∼ NA*q1+q2+q3+q4+q5+q6
4 control =∼ NA*c1+c2+c3+c4+c5
5 underst =∼ NA*u1+u2+u3+u4+u5
6 satisf ∼∼ 1*satisf
7 quality ∼∼ 1*quality
8 control ∼∼ 1*control
9 underst ∼∼ 1*underst

10 satisf ∼ quality+control+underst+cgraph+citem+cfriend
11 quality ∼ control+underst+cgraph+citem+cfriend
12 control ∼ underst+cgraph+citem+cfriend
13 underst ∼ cgraph+p2*citem+p3*cfriend
14 ’;
15 fit <- sem(model, data=twc, ordered=names(twc[1:23]));
16 summary(fit, fit.measures=TRUE);
17 wald(fit, "p2;p3"); #conduct the omnibus test
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Listing 6 SEM output

1 MODEL FIT INFORMATION
2 Chi-Square Test of Model Fit
3 Value 341.770*
4 Degrees of Freedom 212
5 P-Value 0.0000
6 Wald Test of Parameter Constraints
7 Value 9.333
8 Degrees of Freedom 2
9 P-Value 0.0094

10 RMSEA (Root Mean Square Error Of Approximation)
11 Estimate 0.048
12 90 Percent C.I. 0.038 0.057
13 Probability RMSEA <= .05 0.637
14 CFI/TLI
15 CFI 0.990
16 TLI 0.988
17
18 MODEL RESULTS
19 Two-Tailed
20 Estimate S.E. Est./S.E. P-Value
21 <CFA output excluded>
22 SATISF ON
23 QUALITY 0.434 0.077 5.600 0.000
24 CONTROL -0.833 0.111 -7.492 0.000
25 UNDERST 0.109 0.079 1.374 0.169
26 QUALITY ON
27 CONTROL -0.761 0.086 -8.827 0.000
28 UNDERST 0.055 0.077 0.710 0.478
29 CONTROL ON
30 UNDERST -0.320 0.070 -4.579 0.000
31 SATISF ON
32 CGRAPH 0.036 0.145 0.249 0.803
33 CITEM 0.104 0.180 0.577 0.564
34 CFRIEND -0.205 0.183 -1.122 0.262
35 QUALITY ON
36 CGRAPH 0.105 0.147 0.716 0.474
37 CITEM 0.093 0.158 0.586 0.558
38 CFRIEND 0.240 0.190 1.262 0.207
39 CONTROL ON
40 CGRAPH -0.155 0.141 -1.099 0.272
41 CITEM -0.010 0.171 -0.058 0.954
42 CFRIEND -0.116 0.165 -0.701 0.483
43 UNDERST ON
44 CGRAPH 0.524 0.137 3.834 0.000
45 CITEM 0.342 0.166 2.060 0.039
46 CFRIEND 0.484 0.163 2.977 0.003

The structural part of a SEM should be specified in accordance with the study
hypotheses. However, if we only include the hypothesized effects, one may over-
look important additional effects. For example, our hypotheses may suggest that the
inspectability and control manipulations increase users’ understandability and per-
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ceived control, that understandability and perceived control increase the perceived
recommendation quality, and that this in turn increases system satisfaction. These
hypotheses assert that understandability and control have a mediated (indirect) effect
on system satisfaction, but it is perfectly plausible that there also be a direct effect.
Similarly, the hypotheses assert a direct effect of understandability on perceived
recommendation quality, but it is possible that this effect is actually mediated by
perceived control. A prudent way to specify the structural part of a SEM is therefore
to start with a “saturated” path model of the core variables of the study (i.e. OSA,
SSA and EXP), and then prune any non-significant effects from this model.

To build a saturated path model, first line up the core variables in the predicted
order of cause and effect. The Knijnenburg et al. [67] framework suggests a general
order: OSA → SSA → EXP. If there are multiple SSA or EXP, one should try to
find theoretical or empirical arguments for a certain causal direction among them. In
the example, we argue cgraph, citem and cfriend14 → underst→ control→
quality→ satisf. Next, set up all possible regressions that adhere to the correct
causal direction; this is the model we ran in our example. The output of the exam-
ple shows that several effects in this saturated model are non-significant. The next
step is to iteratively prune the model from non-significant effects until all effects are
significant at p < .05 (or for experiments with a very large sample, p < .01). In our
example, we would iteratively remove non-significant effects on lines 25, 28, and
31–42. This “trimmed” SEM is presented graphically in Fig. 2; this is a standardized
way to present the outcomes of a SEM analysis. Finally, we add the hypothesized ef-
fects of SCs, PCs and INTs to the model. The final SEM of our example is presented
graphically in Fig. 3 of [62].

The main benefit of SEM over other statistical methods is that it estimates the
measured factors and all hypothesized paths in a single model. This has several ad-
vantages over a piecewise analysis. First of all, SEM explicitly models the mediated
structure of causal effects. For example, Fig. 2 shows that the effect of understand-
ability on perceived recommendation quality is fully mediated by perceived control.

User Experience (EXP)Objective System 
Aspects (OSA)

Subjective System Aspects (SSA)

++

++

+

 Understandability Satisfaction 
with the system

Perceived 
control

Perceived 
recommendation 

quality

Control
item/friend vs. no control

Inspectability
full graph vs. list only

0.415 
(0.080)***

0.883 (0.119)***
0.397
(0.071)***

0.776
(0.084)***

!2(2) = 8.516*
item: 0.404 (0.207)*
friend: 0.588 (0.206)**

0.681 
(0.174)***

+

Fig. 2 The structural equation model of the trimmed SEM example. Significance levels:
*** p < .001, ** p < .01, ‘ns’ p > .05. Numbers on the arrows (and their thickness) represent the
β -coefficients (and standard error) of the effect. Factors are scaled to have an SD of 1.

14 By design, experimental manipulations can only be independent variables (i.e. they never have
incoming arrows), so they always start the causal chain.
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In common terms: understandability leads to better recommendations because (and
only because) understandability increases users’ perceived control over the recom-
mendations. Another example: the effect of perceived control on satisfaction is par-
tially mediated by perceived recommendation quality. In common terms: control in-
creases users’ satisfaction partially because it leads to better recommendations, and
partially because of other, unobserved reasons. These other reasons can be explored
in a follow-up study. The ability to argue about the causal structure of a model is
the main scientific advantage of SEM over piecewise statistical analyses. Mediated
effects can be tested in piecewise models as well, but only in a very cumbersome,
post-hoc fashion.

Secondly, in SEM the quality of the entire model itself can be evaluated with a
number of fit statistics (lines 1–5 and 10–16). The Chi-square Test of Model Fit tests
the difference between the predicted and observed covariance matrix. A significant
test means that there is significant misfit between the model and reality. Models
are an abstraction of reality, though, so a certain amount of misfit is expected, and
this often amounts to significant misfit [8]. The alternative fit indices (CFI, T LI,
and RMSEA) give an indication of how much misfit the model contains. Hu and
Bentler [51] propose cut-off values for these indices to be: CFI > .96, T LI > .95,
and RMSEA < .05 for a good model. The 90% confidence interval on the RMSEA
indicates the precision with which the amount of misfit is predicted. This interval
will be wider in smaller samples, and should remain below .10. The model fit statis-
tics help researchers in their effort to find a well-fitting model.15

Finally, there is a technical advantage to fitting the measurement model and the
structural model simultaneously. Psychological constructs are never measured with
100% precision, even when they are measured with multiple items. This lack of pre-
cision leads to measurement error, which attenuates the structural effects. In SEM,
however, the precision of a factor can be estimated, and the structural effects can be
corrected for measurement error, leading to more powerful statistical tests and thus
a more robust statistical analysis. Note that despite this additional power, SEM is not
a suitable method for analyzing data from small samples; estimating a reasonably
complex SEM model requires data from at least 200 participants [55, 59].

3.5.4 Practical tip: Learn More About Structural Equation Modeling

MPlus and the Lavaan R package are but examples of tools to analyze Struc-
tural Equation Models. Other tools include AMOS and Lisrel, and several differ-
ent R packages. We recommend the use of MPlus because it is easy to learn, has
a powerful set of advanced modeling features, and it uses non-normality robust
estimators by default. It also has good online support and an expansive collec-
tion of high quality video lectures covering a wide range of simple and advanced
modeling techniques. We advise any reader who is serious about SEM to go to
http://www.statmodel.com/ and watch these videos. Beyond these videos, Kline [59]

15 Like in CFA, more exploratory model efforts can be assisted by the use of modification indices.
Please consult [59] for examples.
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provides a more general introduction to SEM, and Bollen [13] is the most compre-
hensive technical reference.

4 Conclusion

When we first endeavored to explain the process of conducting user experiments in
[69], we presented it with the following four steps:

1. Assign participants to conditions
2. Log interaction behavior
3. Measure subjective experience
4. Analyze the collected data

Following an overview of our user-centric evaluation framework and a discussion of
interesting recommender system aspects to evaluate, the practical guidelines in this
chapter provide a more comprehensive discussion of the steps involved in conduct-
ing user experiments. These guidelines first emphasized the formulation of testable
hypotheses. They then discussed the importance of collecting an unbiased sample of
participants that is large enough to test the hypothesized effects. Next, they covered
the development of distinct experimental conditions that manipulate relevant system
aspects, as well as different ways of randomly assigning participants to these con-
ditions. The guidelines then covered the practice of measuring subjective constructs
that can be used to determine the perceptual and evaluative effects of the experimen-
tal manipulations. Finally, they explained in detail how to statistically evaluate the
formulated hypotheses with the collected data.

By now it should be clear that learning about user experiments requires work-
ing knowledge in several related domains: It involves familiarizing oneself with
the basic theory of human-computer interaction and human decision-making, re-
search methods, psychometrics and scale development, and statistics. This chapter
has touched upon each of these topics briefly, but we encourage readers to con-
tinue their learning process in each of these directions. To this effect, we include a
selection of excellent textbooks and other sources below:

On human-computer interaction and human decision-making

• Jacko, “The Human-Computer Interaction Handbook: Fundamentals, Evolv-
ing Technologies, and Emerging Applications” [54]: A thorough primer on
Human-Computer Interaction. This book covers the principles of human cog-
nition, established interaction paradigms, and HCI design and evaluation prac-
tices.

• Kahneman, “Thinking, Fast and Slow” [56]: A very accessible summary of
Kahneman’s seminal research on human decision-making.

• Smith, Goldstein, and Johnson, “Choice Without Awareness: Ethical and Pol-
icy Implications of Defaults” [105]: A recent paper discussing the ethical im-
plications of defaults in decision-making. The paper makes suggestions of
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how to solve this problem by providing “adaptive defaults” (a type of recom-
mendation).

On research methods

• MacKenzie, “Human-Computer Interaction: An Empirical Research Perspec-
tive” [80]: A thorough primer on the design, evaluation and reporting of
Human-Computer Interaction experiments.

• Purchase, “Experimental Human-Computer Interaction: A Practical Guide
with Visual Examples” [97]: Another primer on experiments; this book con-
tains more details on the evaluation.

On psychometrics and scale development

• DeVellis, “Scale Development, Theory and Applications” [27]: A comprehen-
sive treatment of how to develop measurement scales and assess their quality.

• Schaeffer and Presser, “The Science of Asking Questions” [102]: An in-depth
treatment of how to write survey questions.

• Podsakoff, MacKenzie, Lee, and Podsakoff, “Common Method Biases in
Behavioral Research” [93]: A paper describing the problem of “Common
Method Bias” in survey research, and how to solve or mitigate it.

On statistics

• Utts, “Seeing Through Statistics” [113]: A thorough primer on the statistical
evaluation of experimental results.

• Neter, Kutner, Nachtsheim, and Wasserman, “Applied Linear Statistical Mod-
els” [86]: A more in-depth treatment of linear statistical methods.

• Kline, “Principles and Practice of Structural Equation Modeling” [59]: An
in-depth treatment of structural equation modeling.

We hope that this chapter will spur the adoption of user experiments in the field of
recommender systems. We believe that this is an indispensible requirement if the
field of recommender systems is indeed to move “from algorithms to user experi-
ence” (cf. [72]).
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